93
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The influence of membrane separation technique in the biodiesel and bioethanol production process: a review

, , ORCID Icon, , &
Pages 903-928 | Received 12 Sep 2023, Accepted 10 Dec 2023, Published online: 17 Dec 2023

References

  • Abdurakhman YB, Putra ZA, Bilad MR, et al. Techno-economic analysis of biodiesel production process from waste cooking oil using catalytic membrane reactor and realistic feed composition. Chem Eng Res Des. 2018;134:564–574. doi:10.1016/j.cherd.2018.04.044.
  • Abomohra AE-F, Elsayed M, Esakkimuthu S, et al. Potential of fat, oil and grease (FOG) for biodiesel production: a critical review on the recent progress and future perspectives. Prog Energy Combust Sci. 2020;81:100868. doi:10.1016/j.pecs.2020.100868.
  • Achten WMJ, Verchot L, Franken YJ, et al. Jatropha bio-diesel production and use. Biomass Bioenerg. 2008;32(12):1063–1084. doi:10.1016/j.biombioe.2008.03.003.
  • Aditiya HB, Mahlia TMI, Chong WT, et al. Second generation bioethanol production: a critical review. Renew Sustain Energy Rev. 2016;66:631–653. doi:10.1016/j.rser.2016.07.015.
  • Aghababaie M, Beheshti M, Razmjou A, et al. Two phase enzymatic membrane reactor for the production of biodiesel from crude Eruca sativa oil. Renew Energy. 2019;140:104–110. doi:10.1016/j.renene.2019.03.069.
  • Aghbashlo M, Peng W, Tabatabaei M, et al. Machine learning technology in biodiesel research: a review. Prog Energy Combust Sci. 2021;85:100904. doi:10.1016/j.pecs.2021.100904.
  • Alalwan HA, Alminshid AH, Aljaafari HAS. Promising evolution of biofuel generations. Subject review. Renew Energy Focus. 2019;28:127–139. doi:10.1016/j.ref.2018.12.006.
  • Al-Hamamre Z, Foerster S, Hartmann F, et al. Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing. Fuel. 2012;96:70–76. doi:10.1016/j.fuel.2012.01.023.
  • Al-Mardeai S, Elnajjar E, Hashaikeh R, et al. Dynamic model of simultaneous enzymatic cellulose hydrolysis and product separation in a membrane bioreactor. Biochem Eng J. 2021;174:108107. doi:10.1016/j.bej.2021.108107.
  • Angulo-Mosquera LS, Alvarado-Alvarado AA, Rivas-Arrieta MJ, et al. Production of solid biofuels from organic waste in developing countries: a review from sustainability and economic feasibility perspectives. Sci Total Environ. 2021;795:148816. doi:10.1016/j.scitotenv.2021.148816.
  • Aparicio E, Rodríguez-Jasso RM, Pinales-Márquez CD, et al. High-pressure technology for sargassum spp biomass pre-treatment and fractionation in the third generation of bioethanol production. Bioresour Technol. 2021;329:124935. doi:10.1016/j.biortech.2021.124935.
  • Atadashi IM, Aroua MK, Aziz AA. Biodiesel separation and purification: a review. Renew Energy. 2011;36(2):437–443. doi:10.1016/j.renene.2010.07.019.
  • Atadashi IM, Aroua MK, Aziz ARA, et al. Crude biodiesel refining using membrane ultra-filtration process: an environmentally benign process. Egypt J Pet. 2015;24(4):383–396. doi:10.1016/j.ejpe.2015.10.001.
  • Athar M, Zaidi S. A review of the feedstocks, catalysts, and intensification techniques for sustainable biodiesel production. J Environ Chem Eng. 2020;8(6):104523. doi:10.1016/j.jece.2020.104523.
  • Ayodele BV, Alsaffar MA, Mustapa SI. An overview of integration opportunities for sustainable bioethanol production from first- and second-generation sugar-based feedstocks. J Clean Prod. 2020;245:118857. doi:10.1016/j.jclepro.2019.118857.
  • Azhar SHM, Abdulla R, Jambo AS, et al. Yeasts in sustainable bioethanol production: a review. Biochem Biophys Rep. 2017;10:52–61. doi:10.1016/j.bbrep.2017.03.003.
  • Babadi AA, Rahmati S, Fakhlaei R, et al. Emerging technologies for biodiesel production: process, challenges, and opportunities. Biomass Bioenergy. 2022;163:106521. doi:10.1016/j.biombioe.2022.106521.
  • Baker RW. (2004) Membrane technology and application. California: Wiley.
  • Basak B, Patil S, Kumar R, et al. Integrated hydrothermal and deep eutectic solvent-mediated fractionation of lignocellulosic biocomponents for enhanced accessibility and efficient conversion in anaerobic digestion. Bioresour Technol. 2022;351:127034. doi:10.1016/j.biortech.2022.127034.
  • Bashir MA, Wu S, Zhu J, et al. Recent development of advanced processing technologies for biodiesel production: a critical review. Fuel Process. Technol. 2022;227:107120. doi:10.1016/j.fuproc.2021.107120.
  • Beisl S, Monteiro S, Santos R, et al. Synthesis and bactericide activity of nanofiltration composite membranes – cellulose acetate/silver nanoparticles and celullose acetate/silver ion exchanged zeolites. Water Res. 2019;149:225–231. doi:10.1016/j.watres.2018.10.096.
  • Beluhan S, Mihajlovski K, Šantek B, et al. The production of bioethanol from lignocellulosic biomass: pretreatment methods, fermentation, and downstream processing. Energies. 2023;16(19):7003. doi:10.3390/en16197003.
  • Bernier-Oviedo DJ, Rincón-Moreno JA, Solanilla-Duqué JF, et al. Comparison of two pre-treatments methods to produce second-generation bioethanol resulting from sugarcane bagasse. Ind Crops Prod. 2018;122:414–421. doi:10.1016/j.indcrop.2018.06.012.
  • Bet-Moushoul E, Mansourpanah Y, Farhadi K, et al. Investigation of the performance and solvent-resistant properties of NH2-modified MWCNTs/PES-based mixed matrix membranes for biodiesel separation. Energy Fuels. 2016;30(5):4085–4095. doi:10.1021/acs.energyfuels.6b00226.
  • Bhowmik SK, Alqahtani RT. Mathematical analysis of bioethanol production through continuous reactor with a settling unit. Comput Chem Eng. 2018;111:241–251. doi:10.1016/j.compchemeng.2018.01.001.
  • Broda M, Yelle DJ, Serwańska K. Bioethanol production from lignocellulosic biomass – challenges and solutions. Molecules. 2022;27(24):8717. doi:10.3390/molecules27248717.
  • Cao Z, Xia C, Jia W, et al. Enhancing bioethanol productivity by a yeast-immobilized catalytically active membrane in a fermentation-pervaporation coupling process. J Membr Sci. 2020;595:117485. doi:10.1016/j.memsci.2019.117485.
  • Casimiro MH, Silva AG, Alvarez R, et al. PVA supported catalytic membranes obtained by γ-irradiation for biodiesel production. Radiat Phys Chem. 2014;94:171–175. doi:10.1016/j.radphyschem.2013.05.058.
  • Castro-Muñoz R, Boczkaj G, Gontarek E, et al. Membrane technologies assisting plant-based and agro-food by-products processing: a comprehensive review. Trends Food Sci Technol. 2020;95:219–232. doi:10.1016/j.tifs.2019.12.003.
  • Chen W-H, Lo H-J, Yu K-L, et al. Valorization of sorghum distillery residue to produce bioethanol for pollution mitigation and circular economy. Environ Pollut. 2021;285:117196. doi:10.1016/j.envpol.2021.117196.
  • Chen C, Ma K, Zhu Q, et al. A method for concentration of monosaccharide and removal of inhibitors during hydrolysate pre-treatment for improved bioethanol production. J Clean Prod. 2020;260:120999. doi:10.1016/j.jclepro.2020.120999.
  • Chong TY, Cheah SA, Ong CT, et al. Techno-economic evaluation of third-generation bioethanol production utilizing the macroalgae waste: a case study in Malaysia. Energy. 2020;210:118491. doi:10.1016/j.energy.2020.118491.
  • Chowdhury H, Loganathan B. Third-generation biofuels from microalgae: a review. Curr Opin Gree Sustain Chem. 2019;20:39–44. doi:10.1016/j.cogsc.2019.09.003.
  • Chozhavendhan S, Singh MVP, Fransila B, et al. A review on influencing parameters of biodiesel production and purification processes. Curr Research Green Sustain Chem. 2020;1-2:1–6. doi:10.1016/j.crgsc.2020.04.002.
  • Costa FF, Oliveira DT, Brito YP, et al. Lignocellulosics to biofuels: an overview of recent and relevant advances. Curr Opin Gree Sustain Chem. 2020;24:21–25. doi:10.1016/j.cogsc.2020.01.001.
  • Dai L, Huang K, Xia Y, et al. Two-dimensional material separation membranes for renewable energy purification, storage, and conversion. Green Energy Environ. 2021;6:193–211. doi:10.1016/j.gee.2020.09.015.
  • Dandu MSR, Nanthagopal K. Tribological aspects of biofuels – a review. Fuel. 2019;258:116066. doi:10.1016/j.fuel.2019.116066.
  • Donato PD, Finore I, Poli A, et al. The production of second generation bioethanol: the biotechnology potential of thermophilic bacteria. J Clean Prod. 2019;233:1410–1417. doi:10.1016/j.jclepro.2019.06.152.
  • Dave N, Selvaraj R, Varadavenkatesan T, et al. A critical review on production of bioethanol from macroalgal biomass. Algal Res. 2019;42:101606. doi:10.1016/j.algal.2019.101606.
  • Dey P, Pal P, Kevin JD, et al. Lignocellulosic bioethanol production: propescts of emerging membrane technologies to improve the process – a critical review. Rev. Chem. Eng. 2018;36:333–367. doi:10.1515/revce-2018-0014.
  • Ehsan M, Razzaq H, Razzaque S, et al. Recent advances in sodium alginate-based membranes for dehydration of aqueous ethanol through pervaporation. J Polym Sci.. 2022;60(16):2435–2453. doi:10.1002/pol.20220190.
  • Errico M, Madeddu C, Bindseil MF, et al. Membrane assisted reactive distillation for bioethanol purification. Chem Eng Process: Process Intensif. 2020;157:108110. doi:10.1016/j.cep.2020.108110.
  • Esmaeili SAH, Szmerekovsky J, Sobhani A, et al. Sustainable biomass supply chain network design with biomass switching incentives for first-generation bioethanol producers. Energy Policy. 2020;138:111222. doi:10.1016/j.enpol.2019.111222.
  • Fan S, Li J, Liu Y, et al. Bioethanol production in membrane distillation bioreactor with permeate fractional condensation and mechanical vapor compression. Energy Procedia. 2019;158:21–25. doi:10.1016/j.egypro.2019.01.026.
  • Fan S, Xiao Z, Li M, et al. Pervaporation membrane bioreactor with permeate fractional condensation and mechanical vapor compression for energy efficient ethanol production. Appl. Energy. 2016;179:939–947. doi:10.1016/j.apenergy.2016.07.060.
  • Fernandez A, Saffe A, Mazza G, et al. Nonisothermal drying kinetics of biomass fuels by thermogravimetric analysis under oxidative and inert atmosphere. Dry. Technol. 2016;35(2):163–172. doi:10.1080/07373937.2016.1163265.
  • Fernandez A, Sette P, Echegaray M, et al. Clean recovery of phenolic compound, pyro-gasification thermokinetics, and bioenergy potential of spent agro-industrial bio-wastes. Biomass Convers. Biorefin. 2022;13:12509–12526. doi:10.1007/s13399-021-02197-z.
  • Fiorentin-Ferrari LD, Celant KM, Gonçalves BC, et al. Fabrication and characterization of polysulfone and polyethersulfone membranes applied in the treatment of fish skin tanning effluent. J Clean Prod. 2021;294:126127. doi:10.1016/j.jclepro.2021.126127.
  • Furlan FF, Costa CBB, Fonseca GC, et al. Assessing the production of first and second generation bioethanol from sugarcane through the integration of global optimization and process detailed modeling. Comput Chem Eng. 2012;43:1–9. doi:10.1016/j.compchemeng.2012.04.002.
  • Ganesan R, Manigandan S, Shanmugam S, et al. A detailed scrutinize on panorama of catalysts in biodiesel synthesis. Sci Total Environ. 2021;777:145683. doi:10.1016/j.scitotenv.2021.145683.
  • Gao L, Xu W, Xiao G. Modeling of biodiesel production in a membrane reactor using solid alkali catalyst. Chem Eng Process: process Intensif. 2017;122:122–127. doi:10.1016/j.cep.2017.09.019.
  • Ghazali NF, Razak NDA. Recovery of saccharides from lignocellulosic hydrolysates using nanofiltration membranes: a review. Food Bioprod Process. 2021;126:215–233. doi:10.1016/j.fbp.2021.01.006.
  • Goetz LA, Jalvo B, Rosal R, et al. Superhydrophiliic anti-fouling electrospun cellulose acetate membranes coated with chitin nanocrystals for water filtration. J Membr Sci. 2016;510:238–248. doi:10.1016/j.memsci.2016.02.069.
  • Gokulakrishnan SA, Arthanareeswaran G, László Z, et al. Recent development of photocatalytic nanomaterials in mixed matrix membrane for emerging pollutants and fouling control, membrane cleaning process. Chemosphere. 2021;281:130891. doi:10.1016/j.chemosphere.2021.130891.
  • Gomes MCS, Arroyo PA, Pereira NC. Biodiesel production from degummed soybean oil and glycerol removal using ceramic membrane. J Membr Sci. 2011;378(1-2):453–461. doi:10.1016/j.memsci.2011.05.033.
  • Gomes MCS, Arroyo PA, Pereira NC. Influence of acidified water addition on the biodiesel and glycerol separation through membrane technology. J Membr Sci. 2013;431:28–36. doi:10.1016/j.memsci.2012.12.036.
  • Gomes MCS, Arroyo PA, Pereira NC. Influence of oil quality on biodiesel purification by ultrafiltration. J Membr Sci. 2015;496:242–249. doi:10.1016/j.memsci.2015.09.004.
  • Gomes MCS, Moreira WM, Paschoal SM, et al. Modeling of fouling mechanisms in the biodiesel purification using ceramic membranes. Sep Purif Technol. 2021;269:118595. doi:10.1016/j.seppur.2021.118595.
  • Govindaraju R, Chen S-S, Wang L-P, et al. Significance of membrane applications for high-quality biodiesel and byproduct (glycerol) in biofuel industries – review. Curr Pollut Rep. 2021;7:128–145. doi:10.1007/s40726-021-00182-8.
  • Granjo JFO, Nunes DS, Duarte BPM, et al. A comparison of process alternatives for energy-efficient bioethanol downstream processing. Sep Purif Technol. 2020;238:116414. doi:10.1016/j.seppur.2019.116414.
  • Günay ME, Türker L, Tapan NA. Significant parameters and technological advancements in biodiesel production systems. Fuel. 2019;250:27–41. doi:10.1016/j.fuel.2019.03.147.
  • Guzmán-Martínez CE, Maya-Yescas R, Castro-Montoya AJ, et al. Dynamic simulation of control systems for bioethanol reactive dehydration: conventional and intensified case studies. Chem Eng Process: process Intensif. 2021;159:108238. doi:10.1016/j.cep.2020.108238.
  • Halek FS, Farahani SK, Hosseini SM. Fabrication of poly(ether sulfone) based mixed matrix membranes modified by TiO2 nanoparticles for purification of biodiesel produced from waste cooking oils. Korean J Chem Eng. 2016;33(2):629–637. doi:10.1007/s11814-015-0161-4.
  • Handayani N, Wahyuningrum D, Zulfikar MA, Nurbaiti S, Radiman CL, Buchari. The synthesis of biodiesel catalyzed by mucor miehei lipase immobilized onto aminated polyethersulfone membranes. Bioresour Bioprocess, 2016;3:22. doi:10.1186/s40643-016-0098-4.
  • Hapońska M, Nurra C, Abelló S, et al. Membrane reactors for biodiesel production with strontium oxide as a heterogeneous catalyst. Fuel Process Technol. 2019;185:1–7. doi:10.1016/j.fuproc.2018.11.010.
  • He HY, Guo X, Zhu SL. Comparison of membrane extraction with traditional extraction methods for biodiesel production. J. Am. Oil Chem. Soc. 2006;83:457–460. doi:10.1007/s11746-006-1226-7.
  • Helwani Z, Othman MR, Aziz N, et al. Technologies for production of biodiesel focusing on green catalytic techniques: a review. Fuel Process Technol. 2009;90(12):1502–1514. doi:10.1016/j.fuproc.2009.07.016.
  • Homem NC, Beluci NCL, Amorim S, et al. Surface modification of a polyethersulfone microfiltration membrane with graphene oxide for reactive dyes removal. Appl Surf Sci. 2019;486:499–507. doi:10.1016/j.apsusc.2019.04.276.
  • Jambo SA, Abdulla R, Azhar SHM, et al. A review on third generation bioethanol feedstock. Renew Sustain Energy Rev. 2016;65:756–769. doi:10.1016/j.rser.2016.07.064.
  • Ji L, Shi B, Wang L. Pervaporation separation of ethanol/water mixture using modified zeolite filled PDMS membranes. J of Applied Polymer Sci. 2015;132(17):41897. doi:10.1002/app.41897.
  • Junqueira TL, Dias MOS, Filho RM, et al. Simulation of the azeotropic distillation for anhydrous bioethanol production: study on the formation of a second liquid phase. Comput. Aided Chem. Eng. 2009;27:1143–1148. doi:10.1016/S1570-7946(09)70411-0.
  • Kamtsikakis A, McBride S, Zoppe JO, et al. Cellulose nanofiber nanocomposite pervaporation membranes for ethanol recovery. ACS Appl Nano Mater. 2021;4(1):568–579. doi:10.1021/acsanm.0c02881.
  • Karimi S, Ghobadian B, Omidkhah M-R, et al. Experimental investigation of bioethanol liquid phase dehydration using natural clinoptilolite. J Adv Res. 2016;7(3):435–444. doi:10.1016/j.jare.2016.02.009.
  • Karimi S, Karri RR, Yaraki MT, et al. Processes and separation technologies for the production of fuel-grade bioethanol: a review. Environ Chem Lett. 2021;19(4):2873–2890. doi:10.1007/s10311-021-01208-9.
  • Karimi S, Yaraki MT, Karri RR. A comprehensive review of the adsorption mechanisms and factors influencing the adsorption process from the perspective of bioethanol dehydration. Renew Sustain Energy Rev. 2019;107:535–553. doi:10.1016/j.rser.2019.03.025.
  • Karmakar B, Halder G. Progress and future of biodiesel synthesis: advancements in oil extraction and conversion technologies. Energy Convers Manage. 2019;182:307–339. doi:10.1016/j.enconman.2018.12.066.
  • Khalid A, Aslam M, Qyyum MA, et al. Membrane separation processes for dehydration of bioethanol from fermentation broths: recent developments, challenges, and prospects. Renew Sustain Energy Rev. 2019;105:427–443. doi:10.1016/j.rser.2019.02.002.
  • Khawla BJ, Sameh M, Imen G, et al. Potato peel as feedstock for bioethanol production: a comparison of acidic and enzymatic hydrolysis. Ind Crops Prod. 2014;52:144–149. doi:10.1016/j.indcrop.2013.10.025.
  • Kumar R, Basak B, Pal P, et al. Feasibility assessment of bioethanol production from humic acid-assisted alkaline pretreated Kentucky bluegrass (poa prantesis L.) followed by downstream enrichment using direct contact membrane distillation. Bioresour Technol. 2022b;360:127521. doi:10.1016/j.biortech.2022.127521.
  • Kumar R, Ghosh AK, Pal P. Fermentative energy conversion: renewable carbon source to biofuels (ethanol) using Saccharomyces cerevisiae and downstream purification through solar driven membrane distillation and nanofiltration. Energy Convers Manage. 2017;150:545–557. doi:10.1016/j.enconman.2017.08.054.
  • Kumar R, Ghosh AK, Pal P. Fermentative ethanol production from madhuca indica flowers using immobilized yeast cells coupled with solar driven direct contact membrane distillation with commercial hydrophobic membranes. Energy Convers Manage. 2019a;181:593–607. doi:10.1016/j.enconman.2018.12.050.
  • Kumar R, Ghosh AK, Pal P. Sustainable production of biofuels through membrane-integrated systems. Sep. Purif. Rev. 2019b;49:207–228. doi:10.1080/15422119.2018.1562942.
  • Kumar R, Kim TH, Basak B, et al. Emerging approaches in lignocellulosic biomass pretreatment and anaerobic bioprocess for sustainable biofuels production. J Clean Prod. 2022a;333:130180. doi:10.1016/j.jclepro.2021.130180.
  • Kumar R, Pal P. Lipase immobilized graphene oxide biocatalyst assisted enzymatic transesterification of pongamia pinnata (karanja) oil and downstream enrichment of biodiesel by solar-driven direct contact membrane distillation followed by ultrafiltration. Fuel Process Technol. 2021;211:106577. doi:10.1016/j.fuproc.2020.106577.
  • Kusworo TD, Widayat W, Utomo DP, et al. Performance evaluation of modified nanohybrid membrane polyethersulfone-nano ZnO (PES-nano ZnO) using three combination effect of PVP, irradiation of ultraviolet and thermal for biodiesel purification. Renew Energy. 2020;148:935–945. doi:10.1016/j.renene.2019.10.177.
  • Kusworo TD, Yulfarida M, Kumoro AC, et al. Purification of bioethanol fermentation broth using hydrophilic PVA crosslinked PVDF-GO/TiO2 membrane. Chin J Chem Eng. 2023;55:123–136. doi:10.1016/j.cjche.2022.04.028.
  • Lech M, Klimek A, Porzybót D, et al. Three-stage membrane treatment of wastewater from biodiesel production-preliminary research. Membranes (Basel). 2022;12(1):39. doi:10.3390/membranes12010039.
  • Leung DYC, Wu X, Leung MKH. A review on biodiesel production using catalyzed transesterification. Appl Energy. 2010;87(4):1083–1095. doi:10.1016/j.apenergy.2009.10.006.
  • Li J, Zhou W, Fan S, et al. Bioethanol production in vacuum membrane distillation bioreactor by permeate fractional condensation and mechanical vapor compression with polytetrafluoroethylene (PTFE) membrane. Bioresour Technol. 2018;268:708–714. doi:10.1016/j.biortech.2018.08.055.
  • Li T, McCluskey JJ. Consumer preferences for second-generation bioethanol. Energy Econ. 2017;61:1–7. doi:10.1016/j.eneco.2016.10.023.
  • Li X, Shen S, Xu Y, et al. Application of membrane separation processes in phosphorus recovery: a review. Sci Total Environ. 2021;767:144346. doi:10.1016/j.scitotenv.2020.144346.
  • Lin C-Y, Lu C. Development perspectives of promising lignocellulose feedstocks for production of advanced generation biofuels: a review. Renew Sustain Energy Rev. 2021;136:110445. doi:10.1016/j.rser.2020.110445.
  • Lin Y-K, Nguyen V-H, Yu JC-C, et al. Biodiesel production by pervaporation-assisted esterification and pre-esterification using graphene oxide/chitosan composite membranes. J Taiwan Inst Chem Eng. 2017;79:23–30. doi:10.1016/j.jtice.2017.06.031.
  • Liu J-J, Gasmalla MAA, Li P, et al. Enzyme-assisted extraction processing from oilseeds: principle, processing and application. Innov Food Sci Emerg Technol. 2016;35:184–193. doi:10.1016/j.ifset.2016.05.002.
  • Long F, Liu W, Jiang X, et al. State-of-the-art technologies for biofuel production from triglycerides: a review. Renew Sustain Energy Rev. 2021;148:111269. doi:10.1016/j.rser.2021.111269.
  • Loulergue P, Balannec B, Fouchard-Le Graët L, et al. Air-gap membrane distillation for the separation of bioethanol from algal-based fermentation broth. Sep Purif Technol. 2019;213:255–263. doi:10.1016/j.seppur.2018.12.047.
  • Mahboubi A, Cayli B, Bulkan G, et al. Removal of bacterial contamination from bioethanol fermentation system using membrane bioreactor. Fermentation. 2018;4(4):88. doi:10.3390/fermentation4040088.
  • Mahboubi A, Uwineza C, Doyen W, et al. Intensification of lignocellulosic bioethanol production process using continuous double-staged immersed membrane bioreactors. Bioresour Technol. 2020;296:122314. doi:10.1016/j.biortech.2019.122314.
  • Mahboubi A, Ylitervo P, Doyen W, et al. Continuous bioethanol fermentation from wheat straw hydrolysate with high suspended solid content using an immersed flat sheet membrane bioreactor. Bioresour Technol. 2017;241:296–308. doi:10.1016/j.biortech.2017.05.125.
  • Malmali M, Stickel J, Wickramasinghe SR. Investigation of a submerged membrane reactor for continuous biomass hydrolysis. Food Bioprod Process. 2015;96:189–197. doi:10.1016/j.fbp.2015.07.001.
  • Malode SJ, Prabhu KK, Mascarenhas RJ, et al. Recent advances and viability in biofuel production. Energy Convers Manag. 2021;10:100070. doi:10.1016/j.ecmx.2020.100070.
  • Mathew GM, Raina D, Narisetty V, et al. Recent advances in biodiesel production: challenges and solutions. Sci Total Environ. 2021;794:148751. doi:10.1016/j.scitotenv.2021.148751.
  • Mittal N, Bai P, Siepmann JI, et al. Bioethanol enrichment using zeolite membranes: molecular modeling, conceptual process design and techno-economic analysis. J Membr Sci. 2017;540:464–476. doi:10.1016/j.memsci.2017.06.075.
  • Mohiddin MNB, Tan YH, Seow YX, et al. Evaluation on feedstock, technologies, catalyst and reactor for sustainable biodiesel production: a review. J Ind Eng Chem. 2021;98:60–81. doi:10.1016/j.jiec.2021.03.036.
  • Moreira WM, Igreja G, Viotti PV, et al. Soybean biodiesel purification through an acid-system membrane technology: effect of oil quality and separation process parameters. J Chem Technol Biotechnol. 2020;95(7):1962–1969. doi:10.1002/jctb.6395.
  • Moriwaki M, Velázquez JJH, Ruiz JC, et al. Synthesis of hybrid membrane distillation processes with optimal structures for ethanol dehydration. Comput Chem Eng. 2023;178:108385. doi:10.1016/j.compchemeng.2023.108385.
  • Moyo LB, Iyuke SE, Muvhiiwa RF, et al. Application of response surface methodology for optimization of biodiesel production parameters from waste cooking oil using a membrane reactor. S Afr J Chem Eng. 2021;35:1–7. doi:10.1016/j.sajce.2020.10.002.
  • Mozaffarikhah K, Kargari A, Tabatabaei M, et al. Membrane treatment of biodiesel wash-water: a sustainable solution for water recycling in biodiesel production process. J Water Process Eng. 2017;19:331–337. doi:10.1016/j.jwpe.2017.09.007.
  • Mulder M. Basic principles of membrane technology. 2nd ed. London: kluwer Academic Publishers, 1996.
  • Nady N, Franssen MC, Zuilhof H, et al. Modification methods for poly(arylsulfone) membranes: a mini-review focusing on surface modification. Desalination. 2011;275(1-3):1–9. doi:10.1016/j.desal.2011.03.010.
  • Nanda S, Rana R, Sarangi PK, et al. 2018) A broad introduction to first-, second-, and third-generation biofuels. In: Sarangi P ,Nanda S, Mohanty P (eds.) Recent advancements in biofuels and bioenergy utilization. Singapore: Springer. doi:10.1007/978-981-13-1307-3_1.
  • Nazir A, Khan K, Maan A, et al. Membrane separation technology for the recovery of nutraceuticals from food industrial streams. Trend Food Sci Technol. 2019;86:426–438. doi:10.1016/j.tifs.2019.02.049.
  • Nguyenhuynh T, Nithyanandam R, Chong CH, et al. Configuration modification of a submerged membrane reactor for enzymatic hydrolysis of cellulose. Biocatal Agric Biotechnol. 2017;12:50–58. doi:10.1016/j.bcab.2017.08.013.
  • Noriega MA, Narváez PC, Habert AC. Simulation and validation of biodiesel production in liquid-liquid film reactors integrated with PES hollow fibers membranes. Fuel. 2018a;227:367–378. doi:10.1016/j.fuel.2018.04.101.
  • Noriega MA, Narváez PC, Habert AC. Biodiesel separation using ultrafiltration poly(ether sulfone) hollow fiber membranes: improving biodiesel and glycerol rich phases settling. Chem Eng Res Des. 2018b;138:32–42. doi:10.1016/j.cherd.2018.08.013.
  • Othman R, Mohammad AW, Ismail M, et al. Application of polymeric solvent resistant nanofiltration membranes for biodiesel production. J Membr Sci. 2010;348(1-2):287–297. doi:10.1016/j.memsci.2009.11.012.
  • Padaki M, Murali RS, Abdullah MS, et al. Membrane technology enhancement in oil–water separation. A review. Desalination. 2015;357:197–207. doi:10.1016/j.desal.2014.11.023.
  • Pal P, Chaurasia SP, Upadhyaya S, et al. In: Sridhar S, Moulik S (ed.) Membrane processes: pervaporation, vapor permeation and membrane distillation for industrial scale separations. England: Wiley, 2018. doi:10.1002/9781119418399.
  • Pal P, Kumar R, Ghosh AK. Analysis of process intensification and performance assessment for fermentative continuous production of bioethanol in a multi-staged membrane-integrated bioreactor system. Energy Convers. Manage. 2018;171:371–383. doi:10.1016/j.enconman.2018.05.099.
  • Pan L, He M, Wu B, et al. Simultaneous concentration and detoxification of lignocellulosic hydrolysates by novel membrane filtration system for bioethanol production. J Clean Prod. 2019;227:1185–1194. doi:10.1016/j.jclepro.2019.04.239.
  • Papong S, Rewlay-Ngoen C, Itsubo N, et al. Environmental life cycle assessment and social impacts of bioethanol production in Thailand. J Clean Prod. 2017;157:254–266. doi:10.1016/j.jclepro.2017.04.122.
  • Peng P, Shi B, Lan Y. A review of membrane materials for ethanol recovery by pervaporation. Sci Technol. 2010;46(2):234–246. doi:10.1080/01496395.2010.504681.
  • Qing W, Li X, Shao S, et al. Polymeric catalytically active membranes for reaction-separation coupling: a review. J Membr Sci. 2019;583:118–138. doi:10.1016/j.memsci.2019.04.053.
  • Raheem I, Mohiddin MNB, Tan YH, et al. A review on influence of reactor technologies and kinetic studies for biodiesel application. J Ind Eng Chem. 2020;91:54–68. doi:10.1016/j.jiec.2020.08.024.
  • Rastogi M, Shrivastava S. Recent advances in second generation bioethanol production: an insight to pre-treatment, saccharification and fermentation processes. Renew Sustain Energy Rev. 2017;80:330–340. doi:10.1016/j.rser.2017.05.225.
  • Rezania S, Oryani B, Park J, et al. Review on transesterification of non-edible sources for biodiesel production with a focus on economic aspects, fuel properties and by-product applications. Energy Convers. Manage. 2019;201:112155. doi:10.1016/j.enconman.2019.112155.
  • Rozina, Alsaiari M, Ahmad M, Zafar M, Harraz FA, Algethami JS, Šljukić B, Santos DMF, Akhtar MS (2023), 314 Transformation of waste seed biomass of cordia myxa into valuable bioenergy through membrane bioreactor using green bioreactor using green nanoparticles of indium oxide. Chemosphere. 137604. doi:10.1016/j.chemosphere.2022.137604.
  • Saha K, Maharana A, Sikder J, et al. Continuous production of bioethanol from sugarcane bagasse and downstream purification using membrane integrated bioreactor. Catal Today. 2019;331:68–77. doi:10.1016/j.cattod.2017.11.031.
  • Santori G, Nicola GD, Moglie M, et al. A review analyzing the industrial biodiesel production practice starting from vegetable oil refining. Appl Energy. 2012;92:109–132. doi:10.1016/j.apenergy.2011.10.031.
  • Shahid MK, Batool A, Kashif A, et al. Biofuels and biorefineries: development, application and future perspectives emphasizing the environmental and economic aspects. J Environ Manage. 2021;297:113268. doi:10.1016/j.jenvman.2021.113268.
  • Shahid EM, Jamal Y. Production of biodiesel: a technical review. Renew Sustain Energy Rev. 2011;15(9):4732–4745. doi:10.1016/j.rser.2011.07.079.
  • Sharma YC, Yadav M, Upadhyay SN. Latest advances in degumming feedstock oils for large-scale biodiesel production. Biofuels Bioprod Bioref. 2018;13(1):174–191. doi:10.1002/bbb.1937.
  • Sharma B, Larroche C, Dussap C-G. Comprehensive assessment of 2G bioethanol production. Bioresour Technol. 2020a;313:123630. doi:10.1016/j.biortech.2020.123630.
  • Sharma S, Kundu A, Basu S, et al. Sustainable environmental management and related biofuel technologies. J Environ Manage. 2020b;273:111096. doi:10.1016/j.jenvman.2020.111096.
  • Shibuya M, Sasaki K, Tanaka Y, et al. Development of combined nanofiltration and forward osmosis process for production of ethanol from pretreated rice straw. Bioresour Technol. 2017;235:405–410. doi:10.1016/j.biortech.2017.03.158.
  • Shi W, Li T, Li H, et al. Continuous biodiesel production from acidic oil using a combination of the acid-, alkali-catalyzed membrane and GO/PVDF separation membrane. J Ind Eng Chem. 2022;107:268–279. doi:10.1016/j.jiec.2021.11.057.
  • Singh D, Sharma D, Soni SL, et al. Chemical compositions, properties, and standards for different generation biodiesels: a review. Fuel. 2019;253:60–71. doi:10.1016/j.fuel.2019.04.174.
  • Singh D, Sharma D, Soni SL, et al. A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel. 2020;262:116553. doi:10.1016/j.fuel.2019.116553.
  • Singh D, Sharma D, Soni SL, et al. A comprehensive review of physicochemical properties, production process, performance and emissions characteristics of 2nd generation biodiesel feedstock: jatropha curcas. Fuel. 2021a;285:119110. doi:10.1016/j.fuel.2020.119110.
  • Singh D, Sharma D, Soni SL, et al. A comprehensive review of biodiesel production from waste cooking oil and its use as fuel in compression ignition engines: 3rd generation cleaner feedstock. J Clean Prod. 2021b;307:127299. doi:10.1016/j.jclepro.2021.127299.
  • Sokač T, Gojun M, Tušek AJ, et al. Purification of biodiesel produced by lipase catalysed transesterification by ultrafiltration: selection of membranes and analysis of membrane blocking mechanisms. Renew Energy. 2020;159:642–651. doi:10.1016/j.renene.2020.05.132.
  • Suwal S, Li J, Engelberth AS, et al. Application of electro-membrane separation for recovery of acetic acid in lignocellulosic bioethanol production. Food Bioprod Process. 2018;109:41–51. doi:10.1016/j.fbp.2018.02.010.
  • Syafiuddin A, Chong JH, Yuniarto A, et al. The current scenario and challenges of biodiesel production in asian countries: a review. Bioresour Technol Rep. 2020;12:100608. doi:10.1016/j.biteb.2020.100608.
  • Tabatabaei M, Aghbashlo M, Dehhaghi M, et al. Reactor technologies for biodiesel production and processing: a review. Progess Energy Combust Sci. 2019;74:239–303. doi:10.1016/j.pecs.2019.06.001.
  • Tajziehchi K, Sadrameli SM. Optimization for free glycerol, diglyceride, and triglyceride reduction in biodiesel using ultrafiltration polymeric membrane: effect of process parameters. Process Saf Environ Prot. 2021;148:34–46. doi:10.1016/j.psep.2020.09.047.
  • Tayari S, Abedi R, Rahi A. Comparative assessment of engine performance and emissions fueled with three different biodiesel generations. Renew Energy. 2020;147:1058–1069. doi:10.1016/j.renene.2019.09.068.
  • Tgarguifa A, Abderafi S, Bounahmidi T. Energetic optimization of moroccan distillery using simulation and response surface methodology. Renew Sustain Energy Rev. 2017;75:415–425. doi:10.1016/j.rser.2016.11.006.
  • Tgarguifa A, Abderafi S, Bounahmidi T. Energy efficiency improvement of a bioethanol distillery, by replacing a rectifying column with a pervaporation unit. Renew. Energy. 2018;122:239–250. doi:10.1016/j.renene.2018.01.112.
  • Tin PS, Lin HY, Ong RC, et al. Carbon molecular sieve membranes for biofuel separation. Carbon. 2011;49(2):369–375. doi:10.1016/j.carbon.2010.09.031.
  • Toor M, Kumar SS, Malyan SK, et al. An overview on bioethanol production from lignocellulosic feedstocks. Chemosphere. 2020;242:125080. doi:10.1016/j.chemosphere.2019.125080.
  • Torres-Sciancalepore R, Asensio D, Nassini D, et al. Assesment of the behavior of rosa rubiginosa seed waste during slow pyrolysis process towards complete recovery: kinetic modeling and product analysis. Energy Convers. Manag. 2022;272:116340. doi:10.1016/j.enconman.2022.116340.
  • Torres JJ, Cuello M, Ochoa NA, et al. Biodiesel wastewater treatment using nanofiltration membranes. Process Saf Environ Prot. 2021;148:825–833. doi:10.1016/j.psep.2021.02.013.
  • Ullah K, Sharma VK, Ahmad M, Lv P, Krahl J, Wang Z, Sofia (2018), 82 The insight views of advanced technologies and its application in bio-origin fuel synthesis from lignocellulose biomasses waste, a review. Renew Sustain Energy Rev. 3992–4008. doi:10.1016/j.rser.2017.10.074.
  • Usman J, Othman MHD, Ismail AF, et al. An overview of superhydrophobic ceramic membrane surface modification for oil-water separation. J Mater Res Technol. 2021;12:643–667. doi:10.1016/j.jmrt.2021.02.068.
  • Vakulchuk R, Overland I, Scholten D. Renewable energy and geopolitics: a review. Renew Sustain Energy Rev. 2020;122:109547. doi:10.1016/j.rser.2019.109547.
  • Valappil RSK, Ghasem N, Al-Marzouqi M. Current and future trends in polymer membrane-based gas separation technology: a comprehensive review. J Ind Eng Chem. 2021;98:103–129. doi:10.1016/j.jiec.2021.03.030.
  • van Eijck J, Batidzirai B, Faaij A. Current and future economic performance of first and second generation biofuels in developing countries. Appl Energy. 2014;135:115–141. doi:10.1016/j.apenergy.2014.08.015.
  • Veljković VB, Banković-Ilić IB, Stamenković OS. Purification of crude biodiesel obtained by heterogeneously-catalyzed transesterification. Renew Sustain Energy Rev. 2015;49:500–516. doi:10.1016/j.rser.2015.04.097.
  • Vieira S, Barros MV, Sydney CAN, et al. Sustainability of sugarcane lignocellulosic biomass pre-treatment for the production of bioethanol. Bioresour Technol. 2020;299:122635. doi:10.1016/j.biortech.2019.122635.
  • Wang X, Lu J, Liu H, et al. Improved deacidification of high-acid rice bran oil by enzymatic esterification with phytosterol. Process Biochem. 2016;51(10):1496–1502. doi:10.1016/j.procbio.2016.08.013.
  • Wei P, Cheng L-H, Zhang L, et al. A review of membrane technology for bioethanol production. Renew Sustain Energy Rev. 2014;30:388–400. doi:10.1016/j.rser.2013.10.017.
  • Xiong Y, Deng N, Wu X, et al. De novo synthesis of amino-functionalized ZIF-8 nanoparticles: enhanced interfacial compatibility and pervaporation performance in mixed matrix membranes applying for ethanol dehydration. Sep Purif Technol. 2022;285:120321. doi:10.1016/j.seppur.2021.120321.
  • Zabed H, Sahu JN, Suely A, et al. Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sustain Energy Rev. 2017;71:475–501. doi:10.1016/j.rser.2016.12.076.
  • Zhang Y, Nakagawa K, Shibuya M, et al. Improved permselectivity of forward osmosis membranes for efficient concentration of pretreated rice straw and bioethanol production. Journal Membr Sci. 2018;566:15–24. doi:10.1016/j.memsci.2018.08.046.
  • Zhang H, Tian F, Xu L, et al. Batch and continuous esterification for the direct synthesis of high qualified biodiesel from waste cooking oils (WCO) with amberlyst-15/poly (vinyl alcohol) membrane as a bifunctional catalyst. Chem Eng J. 2020;388:124214. doi:10.1016/j.cej.2020.124214.
  • Zhou H, Zhang J, Wan Y, et al. Fabrication of high silicalite-1 content filled PDMS thin composite pervaporation membrane for the separation of ethanol from aqueous solutions. J Membr Sci. 2017;524:1–11. doi:10.1016/j.memsci.2016.11.029.
  • Zhu X, Liu M, Sun Q, et al. Elucidation of the interaction effects of cellulose, hemicellulose and lignin during degradative solvent extraction of lignocellulosic biomass. Fuel. 2022;327:125141. doi:10.1016/j.fuel.2022.125141.
  • Zouhair FZ, Kabbour MR, Ebich F, et al. Dehydration of bioethanol produced from argane pulp using pervaporation membrane process: experimental, molecular dynamics and GCMC simulation studies. J Mol Liq. 2021;329:115441. doi:10.1016/j.molliq.2021.115441.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.