29
Views
0
CrossRef citations to date
0
Altmetric
Research Article

High potential low-cost crude enzymes from Algerian fungal strains for plant polysaccharides hydrolysis

, , , , , & show all
Pages 767-772 | Received 14 Sep 2023, Accepted 10 Dec 2023, Published online: 21 Dec 2023

References

  • Cerqueira Pereira S, Maehara L, Monteiro Machado CM, et al. 2G ethanol from the whole sugar cane lignocellulosic biomass. Biotechnol Biofuels. 2015;8(1):44. doi: 10.1186/s13068-015-0224-0.
  • Kracher D, Oros D, Yao W, et al. Fungal secretomes enhance sugar beet pulp hydrolysis. Biotechnol J. 2014;9(4):483–492. doi: 10.1002/biot.201300214.
  • Galbe M, Wallberg O. Pretreatment for biorefineries: a review of common methods for efficient utilization of lignocellulosic materials. Biotechnol Biofuels. 2019;12(1):294. doi: 10.1186/s13068-019-1634-1
  • de Vries RP, Visser J. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev. 2001;65(4):497–522, table of contents. doi: 10.1128/MMBR.65.4.497-522.2001.
  • Forsberg Z, Sørlie M, Petrovi D, et al. Polysaccharide degradation by lytic polysaccharide monooxygenases. Curr Opin Struct Biol. 2019;59:54–64. doi: 10.1016/j.sbi.2019.02.015.
  • van den Brink J, de Vries RP. Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol. 2011;91(6):1477–1492. doi: 10.1007/s00253-011-3473-2.
  • Qing Q, Wyman CE. Supplementation with xylanase and b-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover. Biotechnol Biofuels. 2011;4(1):18. doi: 10.1186/1754-6834-4-18.
  • Mäkelä MR, DiFalco M, McDonnell E, et al. Genomic and exoproteomic diversity in plant biomass degradation approaches among aspergilli. Stud Mycol. 2018;91:79–99. doi: 10.1016/j.simyco.2018.09.001.
  • Battaglia E, Benoit I, van den Brink J, et al. Carbohydrate-active enzymes from the zygomycete fungus rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level. BMC Genom. 2011;12:38.
  • Benoit I, Culleton H, Zhou M, et al. Closely related fungi employ diverse enzymatic strategies to degrade plant biomass. Biotechnol Biofuels. 2015;8(1):107. doi: 10.1186/s13068-015-0285-0.
  • Chylenski P, Felby C, Østergaard Haven M, et al. Precipitation of Trichoderma reesei commercial cellulase preparations under standard enzymatic hydrolysis conditions for lignocelluloses. Biotechnol Lett. 2012;34(8):1475–1482. doi: 10.1007/s10529-012-0916-5.
  • Haven MO, Jørgensen H. Adsorption of β-glucosidases in two commercial preparations onto pretreated biomass and lignin. Biotechnol Biofuels. 2013;6(1):165. doi: 10.1186/1754-6834-6-165.
  • Qian Y, Zhong L, Gao J, et al. Production of highly efficient cellulase mixtures by genetically exploiting the potential of Trichoderma reesei endogenous cellulases for hydrolysis of corncob residues. Microb Cell Fact. 2017;16(1):207. doi: 10.1186/s12934-017-0825-3.
  • Li P, Sun H, Chen Z, et al. Construction of efficient xylose utilizing Pichia pastoris for industrial enzyme production. Microb Cell Fact. 2015;14(1):22. doi: 10.1186/s12934-015-0206-8.
  • Gao D, Uppugundla N, Chundawat SP, et al. Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnol Biofuels. 2011;4(1):5. doi: 10.1186/1754-6834-4-5.
  • Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999;91(3):553–556. doi: 10.2307/3761358.
  • Jaklitsch WM, Komon M, Kubicek CP, et al. Hypocrea voglmayrii sp. nov. from the Austrian alps represents a new phylogenetic clade in hypocrea/trichoderma. Mycologia. 2005;97(6):1365–1378. doi: 10.1080/15572536.2006.11832743.
  • Higgins DG, Sharp PM. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene. 1988;73(1):237–244. doi: 10.1016/0378-1119(88)90330-7.
  • Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406.
  • Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–1549. doi: 10.1093/molbev/msy096.
  • Jiang Y, Vivas Duarte A, van den Brink J, et al. Enhancing saccharification of wheat straw by mixing enzymes from genetically-modified Trichoderma reesei and Aspergillus niger. Biotechnol Lett. 2016;38(1):65–70. doi: 10.1007/s10529-015-1951-9.
  • Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31(3):426–428. doi: 10.1021/ac60147a030.
  • Eveleigh DE, Mandels M, Andreotti R, et al. Measurement of saccharifying cellulase. Biotechnol Biofuels. 2009;2(1):21. doi: 10.1186/1754-6834-2-21.
  • Ghose TK. Measurement of cellulase activities. Pure Appl Chem. 1987;59(2):257–268. doi: 10.1351/pac198759020257.
  • Jaklitsch WM, Voglmayr H. Biodiversity of Trichoderma (hypocreaceae) in Southern Europe and macaronesia. Stud Mycol. 2015;80(1):1–87. doi: 10.1016/j.simyco.2014.11.001.
  • Jaklitsch WM, Samuels GJ, Dodd SL, et al. Hypocrea rufa/Trichoderma viride: a reassessment, and description of five closely related species with and without warted conidia. Stud Mycol. 2006;55:135.
  • Samson RA, Visagie CM, Houbraken J, et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol. 2014;78:141.
  • Houbraken J, Kocsub S, Visagie CM, et al. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): an overview of families, genera, subgenera, sections, series and species. Stud Mycol. 2020;95:5–169. doi: 10.1016/j.simyco.2020.05.002.
  • Bian C, Kusuya Y, Sklenář F, et al. Reducing the number of accepted species in Aspergillus series nigri. Stud Mycol. 2022;102(1):95–132. doi: 10.3114/sim.2022.102.03.
  • Varga J, Frisvad JC, Kocsubé S, et al. New and revisited species in Aspergillus section nigri. Stud Mycol. 2011;69(1):1–17. 2011. doi: 10.3114/sim.2011.69.01.
  • Frisvad JC, Hubka V, Ezekiel CN, et al. Taxonomy of Aspergillus section flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud Mycol. 2019;93(1):1–63. doi: 10.1016/j.simyco.2018.06.001.
  • Meijer M, Houbraken JAMP, Dalhuijsen S, et al. Growth and hydrolase profiles can be used as characteristics to distinguish Aspergillus niger and other black aspergilla. Stud Mycol. 2011;69(1):19–30. doi: 10.3114/sim.2011.69.02.
  • Kjærbølling I, Vesth T, Frisvad JC, et al. Comparative genomics study of 23 Aspergillus species from section flavi. Nat Commun. 2020;11(1):1106. doi: 10.1038/s41467-019-14051-y.
  • Vesth TC, Nybo JL, Theobald S, et al. Investigation of inter- and intraspecies variation through genome sequencing of Aspergillus section nigri. Nat Genet. 2018;50(12):1688–1695. doi: 10.1038/s41588-018-0246-1.
  • Zhang Y, Yang J, Luo L, et al. Low-cost cellulase-hemicellulase mixture secreted by Trichoderma harzianum EM0925 with complete saccharification efficacy of lignocellulose. Int J Mol Sci. 2020;21(2):371. doi: 10.3390/ijms21020371.
  • Knudsen KEB. Fiber and nonstarch polysaccharide content and variation in common crops used in broiler diets. Poult Sci. 2014;93(9):2380–2393. doi: 10.3382/ps.2014-03902.
  • Apprich S, Tirpanalan Ö, Hell J, et al. Wheat bran-based biorefinery 2: valorization of products. LWT - Food Sci Technol. 2014;56(2):222–e231. doi: 10.1016/j.lwt.2013.12.003.
  • Reyes‑Sosa FM, López Morales M, Platero Gómez AI, et al. Management of enzyme diversity in high‑performance cellulolytic cocktails. Biotechnol Biofuels. 2017;10(1):156. doi: 10.1186/s13068-017-0845-6.
  • Mäkelä MR, Bouzid O, Robl D, et al. Cultivation of Podospora anserina on soybean hulls results in an efficient enzyme cocktail for plant biomass hydrolysis. N Biotechnol. 2017;37(Pt B):162–171. doi: 10.1016/j.nbt.2017.02.002.
  • Peciulyte A, Pisano M, de Vries RP, et al. Hydrolytic potential of five fungal supernatants to enhance a commercial enzyme cocktail. Biotechnol Lett. 2017;39(9):1403–1411. doi: 10.1007/s10529-017-2371-9.
  • de Cássia Spacki K, Paixão Novi DM, Alves de Oliveira-Junior V, et al. Improving enzymatic saccharification of peach palm (Bactris gasipaes) wastes via biological pretreatment with Pleurotus ostreatus. Plants. 2023;12(15):2824. doi: 10.3390/plants12152824.
  • Liu X, Ding S, Gao F, et al. Exploring the cellulolytic and hemicellulolytic activities of manganese peroxidase for lignocellulose deconstruction. Biotechnol Biofuels Bioprod. 2023;16(1):139. doi: 10.1186/s13068-023-02386-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.