90
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Navigating prospects and challenges for green fuels for achieving economical, environmental and ecological resilience: a scientific review

ORCID Icon, , , ORCID Icon, , , , & ORCID Icon show all
Pages 929-941 | Received 13 Oct 2023, Accepted 20 Dec 2023, Published online: 27 Dec 2023

References

  • Kaniapan S, Pasupuleti J, Patma Nesan K, et al. A review of the sustainable utilization of rice residues for bioenergy conversion using different valorization techniques, their challenges and Techno-Economic assessment. Int J Environ Res Public Health. 2022;19(6):3427. doi:10.3390/ijerph19063427.
  • Vedovatto F, Bonatto C, Bazoti SF, et al. Bioresource technology production of biofuels from soybean straw and hull hydrolysates obtained by subcritical water hydrolysis. Bioresour Technol. 2021;328(December 2020):124837. doi:10.1016/j.biortech.2021.124837.
  • Smalley RE. Future Global Energy Prosperity: The Terawatt Challenge. MRS Bulletin. 2005;30(6):412–417. doi:10.1557/mrs2005.124.
  • Acar C, Dincer I. Environmental impact assessment of renewables and conventional fuels for different end use purposes. International Journal of Global Warming. 2017;13(3/4):260–277. doi:10.1504/IJGW.2017.087197.
  • Løkke S, Aramendia E, Malskær J. A review of public opinion on liquid biofuels in the EU: current knowledge and future challenges. Biomass Bioenergy. 2021;150:106094. doi:10.1016/j.biombioe.2021.106094.
  • Ayadi M, Sarma SJ, Pachapur VL, et al. History and global policy of biofuels. Green Energy Technol. 2016;0:1–14. doi:10.1007/978-3-319-30205-8_1.
  • Yin X, Duan X, You Q, et al. Biodiesel production from soybean oil deodorizer distillate usingcalcined duck eggshell as catalyst. Energy Conver Management. 2016;112:199–207. doi:10.1016/j.enconman.2016.01.026.
  • Nath B, Das B, Kalita P, et al. Waste to value addition: utilization of waste brassica nigra plant derived novel green heterogeneous base catalyst for effective synthesis of biodiesel. J Cleaner Product. 2019;239:118112. doi:10.1016/j.jclepro.2019.118112.
  • Oloyede CT, Jekayinfa O, Alade O, et al. Potential heterogeneous catalysts from three biogenic residues toward sustainable biodiesel production : synthesis and characterization. 2022;2022:1–17. doi:10.1002/slct.202203816.
  • Tseng ML, Chiu ASF, Tan RR, et al. Sustainable consumption and production for Asia: sustainability through green design and practice. J Cleaner Product. 2013;40:1–5. doi:10.1016/j.jclepro.2012.07.015.
  • Olatundun EA, Borokini OO, Betiku E. Cocoa pod Husk-Plantain peel blend as a novel green heterogeneous catalyst for renewable and sustainable honne oil biodiesel synthesis: a case of biowastes-to-wealth. Renewable Energy. 2020;166:163–175. doi:10.1016/j.renene.2020.11.131.
  • Ramayah T, Lee JWC, Lim S. Sustaining the environment through recycling: an empirical study. J Environ Manage. 2012;102:141–147. doi:10.1016/j.jenvman.2012.02.025.
  • Adebayo AO, Jekayinfa SO, Abgede OO, et al. Biogas production potential of moringa (oleifera L.) residues at mesophilic temperature. American Journal of Engineering Research. 2020;9(12):87–92.
  • Jekayinfa SO, Orisaleye JI, Pecenka R. An assessment of potential resources for biomass energy in Nigeria. Resources. 2020;9(8):92. doi:10.3390/resources9080092.
  • Ramachandran K, Sivakumar P, Suganya T, et al. Bioresource technology production of biodiesel from mixed waste vegetable oil using an aluminium hydrogen sulphate as a heterogeneous acid catalyst. Bioresour Technol. 2011;102(15):7289–7293. doi:10.1016/j.biortech.2011.04.100.
  • Adila FAH, Hamzah MH, Che Man H, et al. Recent updates on the conversion of pineapple waste (ananas comosus) to Value-Added products, future perspectives and challenges. Agronomy. 2021;1(1):1–27.
  • Neto CJD, Sydney EB, Porto de Souza Vandenberghe L, et al. Green fuels technology. Green Energy Technol. 2016;2016(January 2018):387–406. doi:10.1007/978-3-319-30205-8.
  • Othman MF, Adam A, Najafi G, et al. Green fuel as alternative fuel for diesel engine: a review. Renewable Sustainable Energy Rev. 2017;80(May):694–709. doi:10.1016/j.rser.2017.05.140.
  • Damodharan D, Sathiyagnanam AP, Rana D, et al. Extraction and characterization of waste plastic oil (WPO) with the effect of n-butanol addition on the performance and emissions of a DI diesel engine fueled with WPO/diesel blends. Energy Convers Management. 2017;131:117–126. doi:10.1016/j.enconman.2016.10.076.
  • Oloyede CT, Nsikak-Abasi Ubohon Jekayinfa O, Olatayo S, et al. Exploration of agricultural residue ash as a solid green heterogeneous base catalyst for biodiesel production. Engineer Report. 2022;2022(October):1–23. doi:10.1002/eng2.12585.
  • Nicoletti G, Arcuri N, Nicoletti G, et al. A technical and environmental comparison between hydrogen and some fossil fuels. Energy Conversion Management. 2015;89:205–213. doi:10.1016/j.enconman.2014.09.057.
  • Arutyunov VS, Lisichkin GV. Energy resources of the 21st century: problems and forecasts. Can renewable energy sources replace fossil fuels? Russ Chem Rev. 2017;86(8):777–804. doi:10.1070/RCR4723.
  • Uusitalo V, Leino M. Neutralizing global warming impacts of crop production using biochar from side flows and buffer zones: a case study of oat production in the boreal climate zone. J Cleaner Product. 2019;227:48–57. doi:10.1016/j.jclepro.2019.04.175.
  • Speirs J, McGlade C, Slade R. Uncertainty in the availability of natural resources: fossil fuels, critical metals and biomass. Energy Policy. 2015;87:654–664. doi:10.1016/j.enpol.2015.02.031.
  • Ogunkunle O, Ahmed NA. A review of global current scenario of biodiesel adoption and combustion in vehicular diesel engines. Energy Reports. 2019;5(vember):1560–1579. doi:10.1016/j.egyr.2019.10.028.
  • Mansir N, Hin Taufiq-Yap Y, Rashid U, et al. Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: a review. Energy Convers Management. 2017;141(July):171–182. doi:10.1016/j.enconman.2016.07.037.
  • Fattah IM, Rizwanul HC, Ong TMI, et al. State of the art of catalysts for biodiesel production. Front Energy Res. 2020;8(June):1–17. doi:10.3389/fenrg.2020.00101.
  • Owusu PA, Asumadu-Sarkodie S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engin. 2016;3(1):1167990. doi:10.1080/23311916.2016.1167990.
  • Martins F, Felgueiras C, Smitkova M, et al. Analysis of fossil fuel energy consumption and environmental impacts in european countries. Energies. 2019;12(6):964. doi:10.3390/en12060964.
  • Mohr SH, Wang J, Ellem G, et al. Projection of world fossil fuels by country. Fuel. 2015;141:120–135. doi:10.1016/j.fuel.2014.10.030.
  • BP. 2022. BP statistical review of world energy 2022 (71st Ed.). Bp., 1–60.
  • Kabeyi MJ, Barasa OA, Olanrewaju. Technologies for biogas to electricity conversion. Energy Reports. 2022;8:774–786. doi:10.1016/j.egyr.2022.11.007.
  • Cui X, Lu M, Bilal M, et al. Hydrothermal carbonization of different wetland biomass wastes : phosphorus reclamation and hydrochar production. Waste Manag. 2020;102:106–113. doi:10.1016/j.wasman.2019.10.034.
  • Lu Y, Khan ZA, Alvarez-Alvarado MS, et al. A critical review of sustainable energy policies for the promotion of renewable energy sources. Sustainability. 2020;12(12):5078. doi:10.3390/su12125078.
  • Bhattacharyya SC. 2019. The economics of renewable energy supply. Energy Econ 2019:217–248. doi:10.1007/978-1-4471-7468-4_8.
  • Perera F. Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist. Int J Environ Res Public Health. 2018;15(1):16. doi:10.3390/ijerph15010016.
  • Ntanos S, Skordoulis M, Kyriakopoulos G, et al. Renewable energy and economic growth: Evidence from european countries. Sustainability. 2018;10(8):2626. doi:10.3390/su10082626.
  • Bertrand E, Pradel M, Dussap C-G. Economic and environmental aspects of biofuels. In: Soccol CR, Brar SK, Faulds C, Ramos LP, editors. Green Fuels Technology: Biofuels. Springer International Publishing; 2016. p. 525–555. doi:10.1007/978-3-319-30205-8_22.
  • Guo M, Song W, Buhain J. Bioenergy and biofuels: history, status, and perspective. Renewable Sustainable Energy Rev. 2015;42:712–725. doi:10.1016/j.rser.2014.10.013.
  • Kousoulidou M, Lonza L. Biofuels in aviation: fuel demand and CO2 emissions evolution in Europe toward 2030. Transportation Res Part D. 2016;46:166–181. doi:10.1016/j.trd.2016.03.018.
  • Nyakuma BB. Thermogravimetric and kinetic analysis of melon (citrullus colocynthis L.) seed husk using the distributed activation energy model. Environ Climate Technol. 2015;15(1):77–89. doi:10.1515/rtuect-2015-0007.
  • Jurgens G, Survase S, Berezina O, et al. Butanol production from lignocellulosics. Biotechnol Lett. 2012;34(8):1415–1434. doi:10.1007/s10529-012-0926-3.
  • Lin CY, Lu C. Development perspectives of promising lignocellulose feedstocks for production of advanced generation biofuels: a review. Renewable Sustainable Energy Rev. 2021;136(February):110445. doi:10.1016/j.rser.2020.110445.
  • Mwangi JK, Lee WJ, Chang YC, et al. An overview: energy saving and pollution reduction by using green fuel blends in diesel engines. Appl Energy. 2015;159:214–236. doi:10.1016/j.apenergy.2015.08.084.
  • Huzir N, Aziz MA, Ismail SB, et al. Agro-Industrial waste to biobutanol production : eco-Friendly biofuels for next generation. Renewable Sustainable Energy Rev. 2018;94(vember 2017):476–485. doi:10.1016/j.rser.2018.06.036.
  • Mohd Noor CW, Noor MM, Mamat R. Biodiesel as alternative fuel for marine diesel engine applications: a review. Renewable Sustainable Energy Rev. 2018;94(April):127–142. doi:10.1016/j.rser.2018.05.031.
  • Vicedo-Cabrera AM, Guo Y, Sera F, et al. Temperature-Related mortality impacts under and beyond paris agreement climate change scenarios. Clim Change. 2018;150(3–4):391–402. doi:10.1007/s10584-018-2274-3.
  • Nguyen Q, Bowyer J, Howe J, et al. 2017. Production of sustainable bioplastic. Biofuels/biorefinery development report card, no. 265896: 1–15.
  • Statista. 2023. Biofuel production worldwide. https://www.statista.com/.
  • Zabed H, Sahu JN, Boyce AN, et al. Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renewable Sustainable Energy Rev. 2016;66:751–774. doi:10.1016/j.rser.2016.08.038.
  • Balajii M, Niju S. A novel biobased heterogeneous catalyst derived from Musa Acuminata peduncle for biodiesel production – process optimization using Central composite design. Energy Convers Manage. 2019;189(December 2018):118–131. doi:10.1016/j.enconman.2019.03.085.
  • Nanda S, Mohanty P, Pant KK, et al. Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenerg Res. 2013;6(2):663–677. doi:10.1007/s12155-012-9281-4.
  • Ceylan S, Goldfarb JL. Green tide to green fuels: TG-FTIR analysis and kinetic study of ulva prolifera pyrolysis. Energy Convers Management. 2015;101:263–270. doi:10.1016/j.enconman.2015.05.029.
  • Perin G, Jones PR. Economic feasibility and long-term sustainability criteria on the path to enable a transition from fossil fuels to biofuels. Curr Opin Biotechnol. 2019;57:175–182. doi:10.1016/j.copbio.2019.04.004.
  • Oloyede CT, Jekayinfa SO, Alade AO, et al. Synthesis of biobased composite heterogeneous catalyst for biodiesel production using simplex lattice design mixture : Optimization process by taguchi method synthesis of biobased composite heterogeneous catalyst for biodiesel production using simplex lat. Energies. 2023;16(5):2197. doi:10.3390/en16052197.
  • Falowo OA, Ojumu TV, Pereao O, et al. Sustainable biodiesel synthesis from Honne-Rubber-Neem oil blend with a novel mesoporous base catalyst synthesized from a mixture of three agrowastes. Catalysts. 2020;10(2):190. doi:10.3390/catal10020190.
  • Maquiné I, Lopes F, Cândida C, et al. Application of calcined waste cupuaçu (theobroma grandi Fl orum) seeds as a low-cost solid catalyst in soybean oil ethanolysis : statistical optimization. Energy Convers Manag. 2019;200(July):112095. doi:10.1016/j.enconman.2019.112095.
  • Filimonau V, Mika M, Pawlusiński R. Public attitudes to biofuel use in aviation: evidence from an emerging tourist market. J Cleaner Product. 2016;172:3102–3110. doi:10.1016/j.jclepro.2017.11.101.
  • Filimonau V, Högström M. The attitudes of UK tourists to the use of biofuels in civil aviation: an exploratory study. J Air Transport Management. 2017;63:84–94. doi:10.1016/j.jairtraman.2017.06.002.
  • Betiku E, Akintunde AM, Ojumu TV. Banana peels as a biobase catalyst for fatty acid methyl esters production using napoleon’s plume (bauhinia monandra) seed oil: a process parameters optimization study. Energy. 2016;103:797–806. doi:10.1016/j.energy.2016.02.138.
  • Mofijur M, Masjuki HH, Kalam MA, et al. Comparative evaluation of performance and emission characteristics of moringa oleifera and palm oil based biodiesel in a diesel engine. Indust Crops Products. 2014;53:78–84. doi:10.1016/j.indcrop.2013.12.011.
  • Raj T, Kapoor M, Gaur R, et al. Physical and chemical characterization of various Indian agriculture residues for biofuels production. Energy Fuels. 2015;29(5):3111–3118. doi:10.1021/ef5027373.
  • Sun J, Xiong X, Wang M, et al. Microalgae biodiesel production in China: a preliminary economic analysis. Renewable Sustainable Energy Rev. 2019;104(January):296–306. doi:10.1016/j.rser.2019.01.021.
  • Manaf ISA, Embong NH, Khazaai SNM, et al. A review for key challenges of the development of biodiesel industry. Energy Conver Manag. 2019;185(February):508–517. doi:10.1016/j.enconman.2019.02.019.
  • Odude VO, Adesina AJ, Oyetunde OO, et al. Application of agricultural waste-based catalysts to transesterification of esterified palm kernel oil into biodiesel: a case of banana fruit peel versus cocoa pod husk. Waste Biomass Valor. 2017;10(4):877–888. doi:10.1007/s12649-017-0152-2.
  • Dai J, Chen B, Hayat T, et al. Sustainability-based economic and ecological evaluation of a rural biogas-Linked Agro-Ecosystem. Renewable Sustainable Energy Rev. 2015;41:347–355. doi:10.1016/j.rser.2014.08.043.
  • Monlau F, Barakat A, Steyer JP, et al. Comparison of seven types of thermo-chemical pretreatments on the structural features and anaerobic digestion of sunflower stalks. Bioresour Technol. 2012;120:241–247. doi:10.1016/j.biortech.2012.06.040.
  • Pirelli T, Chiumenti A, Morese MM, et al. Environmental sustainability of the biogas pathway in Italy through the methodology of the global bioenergy partnership. J Cleaner Product. 2021;318(March):128483. doi:10.1016/j.jclepro.2021.128483.
  • Kim YS, Yoon YM, Kim CH, et al. Status of biogas technologies and policies in South Korea. Renewable Sustainable Energy Rev. 2012;16(5):3430–3438. doi:10.1016/j.rser.2012.02.075.
  • Ju L, Augustine E, Born J, et al. Utilization of surplus electricity from wind power for dynamic biogas upgrading: Northern Germany case study. Biomass Bioenergy. 2014:1–7. doi:10.1016/j.biombioe.2014.02.032.
  • Silva dos Santos IF, Braz Vieira ND, de Nóbrega LGB, et al. Assessment of potential biogas production from multiple organic wastes in Brazil: impact on energy generation, use, and emissions abatement. Resources Conservat Recycl. 2018;131(2017):54–63. doi:10.1016/j.resconrec.2017.12.012.
  • Santos IFSD, Barros RM, Tiago Filho GL. Electricity generation from biogas of anaerobic wastewater treatment plants in Brazil: an assessment of feasibility and potential. J Cleaner Product. 2016;126:504–514. doi:10.1016/j.jclepro.2016.03.072.
  • Koszel M, Lorencowicz E. Agricultural use of biogas digestate as a replacement fertilizers. Agricul Agricul Sci Procedia. 2015;7:119–124. doi:10.1016/j.aaspro.2015.12.004.
  • Hosseini SE, Wahid MA. Development of biogas combustion in combined heat and power generation. Renewable Sustainable Energy Rev. 2014;40:868–875. doi:10.1016/j.rser.2014.07.204.
  • Adebayo AO, Jekayinfa SO, Linke B. Effect of co-digesting pig slurry with maize stalk on biogas production at mesophilic temperature. J Multidisciplinary Eng Sc Technol. 2015;2(8):2295–2300.
  • Adebayo A, Adeleke S, Tiekuro E, et al. The production of biogas from cow dung for powering a motor vehicle tyre tube. J Energy Res Rev. 2018;2(2:1–5. doi:10.9734/jenrr/2019/v2i229733.
  • Global Bioenergy Statistics 2022 World Bioenergy Association. 2022.
  • Calero M, Godoy V, Heras CG, et al. Current state of biogas and biomethane production and its implications for Spain. Sustainable Energy Fuels. 2023;7(15):3584–3602. doi:10.1039/D3SE00419H.
  • Gray KA, Zhao L, Emptage M. Bioethanol. Curr Opin Chem Biol. 2006;10(2):141–146. doi:10.1016/j.cbpa.2006.02.035.
  • Weber C, Farwick A, Benisch F, et al. Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol. 2010;87(4):1303–1315. doi:10.1007/s00253-010-2707-z.
  • Sharma B, Larroche C, Dussap CG. Comprehensive assessment of 2G bioethanol production. Bioresour Technol. 2020;313(January):123630. doi:10.1016/j.biortech.2020.123630.
  • Huang C, Guo H, Zhang H, et al. A new concept for total components conversion of lignocellulosic biomass : a promising direction for clean and sustainable production in its bio-Refinery. J Chem Tech Biotech. 2019;94(8):2416–2424. doi:10.1002/jctb.6086.
  • Mustafa K, Banjarnahor M. Feasibility study of the foundation of bioethanol factory in langkat, North sumatera. Asian J Appl Sci. 2017;6(4r):43–55.
  • Tse TJ, Wiens DJ, Reaney MJ. Production of bioethanol – a review of factors affecting ethanol yield. Fermentation. 2021;7(4):268. doi:10.3390/fermentation7040268.
  • Byadgi SA, Kalburgi PB. Production of bioethanol from waste newspaper. Procedia Environ Sci. 2016;35:555–562. doi:10.1016/j.proenv.2016.07.040.
  • Hincapié G, Mondragón F, López D. Conventional and in situ transesterification of castor seed oil for biodiesel production. Fuel. 2011;90(4):1618–1623. doi:10.1016/j.fuel.2011.01.027.
  • Pinto T, Flores-Alsina X, Gernaey KV, et al. Alone or together ? A review on pure and mixed microbial cultures for butanol production. Renewable Sustainable Energy Rev. 2021;147(May):111244. doi:10.1016/j.rser.2021.111244.
  • Ujor V, Kumar A, Cornish K, et al. Feasibility of producing butanol from industrial starchy food wastes. Applied Energy. 2014;136:590–598. doi:10.1016/j.apenergy.2014.09.040.
  • Kumar A, Gautam A, Dutt D. Biotechnological transformation of lignocellulosic biomass in to industrial products: an overview. Adv Biosci Biotechnol. 2016;7:149–168. doi:10.4236/abb.2016.73014.
  • Amiri H., Karimi K. Pretreatment and hydrolysis of lignocellulosic wastes for butanol production: challenges and perspectives. Bioresour Technol. 2018;270:702–721. doi:10.1016/j.biortech.2018.08.117.
  • Ranjan A, Mayank R, Moholkar VS. Process optimization for butanol production from developed rice straw hydrolysate using Clostridium Acetobutylicum MTCC 481 strain. Biomass Conv Bioref. 2013;3(2):143–155. doi:10.1007/s13399-012-0062-2.
  • Piwowar A, Dzikuć M. Bioethanol production in Poland in the context of sustainable development-current status and future prospects. Energies. 2022;15(7):2582. doi:10.3390/en15072582.
  • RFA. Washington DC, USA: Renewable Fuels Association; 2021.
  • Ibrahim MF, Ramli N, Kamal Bahrin E, et al. Cellulosic biobutanol by clostridia: Challenges and improvements. Renewable Sustainable Energy Rev.2017;79(June 2016):1241–1254. doi:10.1016/j.rser.2017.05.184.
  • Subhadra B, Edwards M. An integrated renewable energy park approach for algal biofuel production in United States. Energy Policy. 2010;38(9):4897–4902. doi:10.1016/j.enpol.2010.04.036.
  • Meyer PM, Rodrigues PHM, Millen DD. Impact of biofuel production in Brazil on the economy, agriculture, and the environment. Animal Frontiers. 2013;3(2):28–37. doi:10.2527/af.2013-0012.
  • Wang Z, Pashaei Kamali F, Osseweijer P, et al. Socioeconomic effects of aviation biofuel production in Brazil: a Scenarios-Based Input-Output analysis. J Cleaner Product. 2019;230(2019):1036–1050. doi:10.1016/j.jclepro.2019.05.145.
  • Obidzinski K, Andriani R, Komarudin H, et al. Environmental and social impacts of oil palm plantations and their implications for biofuel production in Indonesia. Ecol Scoiety. 2012;17(1):125. doi:10.5751/ES-04775-170125.
  • Sorda G, Banse M, Kemfert C. An overview of biofuel policies across the world. Energy Policy. 2010;38(11):6977–6988. doi:10.1016/j.enpol.2010.06.066.
  • Dautzenberg K, Hanf J. Biofuel chain development in Germany: organisation, opportunities, and challenges. Energy Policy. 2008;36(1):485–489. doi:10.1016/j.enpol.2007.08.010.
  • Panichelli L, Dauriat A, Gnansounou E. Life cycle assessment of soybean-based biodiesel in Argentina for export. Int J Life Cycle Assess. 2009;14(2):144–159. doi:10.1007/s11367-008-0050-8.
  • Diogo V, Van Der Hilst F, Van Eijck J, et al. Combining empirical and theory-based land-use modelling approaches to assess economic potential of biofuel production avoiding ILUC: argentina as a case study. Renewable Sustainable Energy Rev. 2014;34:208–224. doi:10.1016/j.rser.2014.02.040.
  • Solecki M, Scodel A, Epstein B. Advanced Biofuel Market Report 2013: Capacity through 2016. Report number: TN 71899. 2013. Available from: https://efiling.energy.ca.gov/GetDocument.aspx?tn=71899&DocumentContentId=36142. Date accessed: 23rd December, 2023.
  • Gehlhar M, Winston A, Somwaru A. Effects of increased biofuels on the U.S. Economy in 2022. SSRN J. 2010:1–38. doi:10.2139/ssrn.1711353.
  • Hoekman SK. Biofuels in the U.S. - challenges and opportunities. Renewable Energy. 2009;34(1):14–22. doi:10.1016/j.renene.2008.04.030.
  • Santacesaria E, Martinez Vicente G, Di Serio M, et al. Main technologies in biodiesel production: state of the art and future challenges. Catalysis Today. 2012;195(1):2–13. doi:10.1016/j.cattod.2012.04.057.
  • Szabados G, Bereczky Á. Comparison tests of diesel, biodiesel, TBK-biodiesel. Period Polytech Mech Eng. 2015;59(3):120–125. doi:10.3311/PPme.7989.
  • Christopher LP, H Kumar, Zambare VP. Enzymatic biodiesel: challenges and opportunities. Appl Energy 2014;119:497–520. doi:10.1016/j.apenergy.2014.01.017.
  • Betiku E, Okon Etim A, Pereao O, et al. Two-Step conversion of neem (azadirachta indica) seed oil into fatty methyl esters using a heterogeneous biomass-based catalyst: an example of cocoa pod husk. Energy Fuels. 2017;31(6):6182–6193. doi:10.1021/acs.energyfuels.7b00604.
  • Darda S, Papalas T, Zabaniotou A. Biofuels journey in Europe: currently the way to low carbon economy sustainability is still a challenge. J Cleaner Product. 2019;208:575–588. doi:10.1016/j.jclepro.2018.10.147.
  • Raud M, Kikas T, Sippula O, et al. Potentials and challenges in lignocellulosic biofuel production technology. Renewable Sustainable Energy Rev. 2019;111(July 2018):44–56. doi:10.1016/j.rser.2019.05.020.
  • Taylor P, Joshi SM, Waghmare JS, et al. Biofuels bio-ethanol and bio-butanol production from orange peel waste. Biofuels. 2015;6(1–2):55–61. doi:10.1080/17597269.2015.1045276.
  • Jiang Y, Liu J, Jiang W, et al. Current status and prospects of industrial bio-production of n-butanol in China. Biotechnol Adv. 2014;33(7):1493–1501. doi:10.1016/j.biotechadv.2014.10.007.
  • Jia T, Dai Y, Wang R. Refining energy sources in winemaking industry by using solar energy as alternatives for fossil fuels: a review and perspective. Renewable Sustainable Energy Rev. 2018;88(October 2017):278–296. doi:10.1016/j.rser.2018.02.008.
  • Giwa SO, Akanbi TO. A review on food uses and the prospect of egusi melon for biodiesel production. Bioenerg Res. 2020;13(4):1031–1045. doi:10.1007/s12155-020-10145-4.
  • Correa DF, Beyer HL, Fargione JE, et al. Towards the implementation of sustainable biofuel production systems. Renewable Sustainable Energy Rev. 2019;107(March):250–263. doi:10.1016/j.rser.2019.03.005.
  • Tyagi OS, Atray N, Kumar B, et al. Production, characterization and development of standards for biodiesel — a review. MAPAN. 2010;25(3):197–218. doi:10.1007/s12647-010-0018-6.
  • World Energy Council Biofuels: Policies, Standards and Technologies. 2010. Available from: https://www.worldenergy.org/assets/downloads/PUB_Biofuels_Policies_Standards_and_Technologies_2010_WEC.pdf. Date accessed: 24th December, 2023. London W1B 5LT United Kingdom.
  • Doshi A, Pascoe S, Coglan L, et al. Economic and policy issues in the production of algae-based biofuels: a review. Renewable Sustainable Energy Rev. 2016;64:329–337. doi:10.1016/j.rser.2016.06.027.
  • Chandel AK, Chan ES, Rudravaram R, et al. Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Molec Biol Review. 2007;2(1):14–32.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.