110
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Extraction and characterisation of lignin from residues of Mexican Ocote pine (Pinus montezumae Lamb.) for biofuel production

, , , &
Pages 793-800 | Received 14 Jun 2023, Accepted 30 Dec 2023, Published online: 13 Jan 2024

References

  • Kirubakaran V, Sivaramakrishnan V, Nalini R, et al. A review on gasification of biomass. Renewable Sustainable Energy Rev. 2009;13(1):179–186. doi: 10.1016/j.rser.2007.07.001.
  • Saha B. Enzymes as biocatalysts for conversion of lignocellulosic biomass to fermentable sugars. In: Hou CT, editor. Handbook of industrial catalysis. Boca Raton: CRC Press; 2005. pp. 1–24.
  • Brinchi L, Cotana F, Fortunati E, et al. Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym. 2013;94(1):154–169. doi: 10.1016/j.carbpol.2013.01.033.
  • Kumar A, Kumar J, Bhaskar T, Anushree. Utilization of lignin: a sustainable and eco-friendly approach. J Energy Inst. 2020;93:235–271. doi: 10.1016/j.joei.2019.03.005.
  • Guadix-Montero S, Sankar M. Review on catalytic cleavage of C–C inter-unit linkages in lignin model compounds: towards lignin depolymerisation. Top Catal. 2018;61(3–4):183–198. doi: 10.1007/s11244-018-0909-2.
  • Watkins D, Nuruddin M, Hosur M, et al. Extraction and characterization of lignin from different biomass resources. J Mater Res Technol. 2015;4(1):26–32. doi: 10.1016/j.jmrt.2014.10.009.
  • Wang M, Leitch M, (Charles) Xu C. Synthesis of phenol-formaldehyde resol resins using organosolv pine lignins. Eur Polym J. 2009;45(12):3380–3388. doi: 10.1016/j.eurpolymj.2009.10.003.
  • Magalhães S, Filipe A, Melro E, et al. Lignin extraction from waste pine sawdust using a biomass derived binary solvent system. Polymers. 2021;13(7):1090. doi: 10.3390/polym13071090.
  • Carvajal JC, Gómez Á, Cardona CA. Comparison of lignin extraction processes: economic and environmental assessment. Bioresour Technol. 2016;214:468–476. doi: 10.1016/j.biortech.2016.04.103.
  • Hu J, Zhang Q, Lee DJ. Kraft lignin biorefinery: a perspective. Bioresour Technol. 2018;247:1181–1183. doi: 10.1016/j.biortech.2017.08.169.
  • Earl Libby C. Pulp and paper science and technology. vol. 1. 10th ed. New York: McGraw-Hill; 1983.
  • Mansouri N.-EE. Despolimerización de lignina para su aprovechamientoen adhesivos para producir tableros de partículas, in Chemical engineering. Tarragona: Universitat Rovira i Virgili; 2006.
  • Azadi P, Inderwildi OR, Farnood R, et al. Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renewable Sustainable Energy Rev. 2013;21:506–523. doi: 10.1016/j.rser.2012.12.022.
  • Chávez-Sifontes M, Dómine M. Lignina, estructura y aplicaciones: Métodos de despolimerización para la obtención de derivados aromáticos de interés industrial. Avances en Ciencias e Ingeniería, 2013;4:15–46.
  • Boschetti WTN, Carvalho AMML, Carneiro ADCO, et al. Potential of kraft lignin as an additive in briquette production. Nord Pulp Paper Res J. 2019;34(1):147–152. doi: 10.1515/npprj-2018-0002.
  • Harrington K, Higgins H, Michell A. Infrared spectra of Eucalyptus regnans F. Muell. and Pinus radiata D. Don. Holzforschung 1964;18(4):108–113.
  • Hergert HL. Infrared spectra of lignin and related compounds. 11. Conifer lignin and model compounds. J Org Chem. 1960;25(3):405–413.
  • Horikawa Y, Hirano S, Mihashi A, et al. Prediction of lignin contents from infrared spectroscopy: chemical digestion and lignin/biomass ratios of cryptomeria japonica. Appl Biochem Biotechnol. 2019;188(4):1066–1076. doi: 10.1007/s12010-019-02965-8.
  • Moosavinejad SM, Madhoushi M, Vakili M, et al. Evaluation of degradation in chemical compounds of wood in historical buildings using Ft-ir and Ft-Raman vibrational spectroscopy. Maderas, Cienc Tecnol. 2019;21:0–0. doi: 10.4067/S0718-221X2019005000310.
  • Rodrigues PC, Cant∼ IP, Janissek P, et al. Polyaniline/lignin blends: FTIR, MEV and electrochemical characterization. Eur Polym J. 2002;38(11):2213–2217.
  • Shi Z, Xu G, Deng J, et al. Structural characterization of lignin from D. sinicus by FTIR and NMR techniques. Green Chem Lett Rev. 2019;12(3):235–243. doi: 10.1080/17518253.2019.1627428.
  • Zhao J, Xiuwen W, Hu J, et al. Thermal degradation of softwood lignin and hardwood lignin by TG-FTIR and Py-GC/MS. Polym Degrad Stab. 2014;108:133–138. doi: 10.1016/j.polymdegradstab.2014.06.006.
  • Dhyani V, Bhaskar T. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energy. 2018;129:695–716. doi: 10.1016/j.renene.2017.04.035.
  • Park C-W, Youe J, Namgung H-W, et al. Effect of lignocellulose nanofibril and polymeric methylene diphenyl diisocyanate addition on plasticized lignin/polycaprolactone composites. Bioresour. 2018;13:6802–6817.
  • Kawamoto H. Lignin pyrolysis reactions. J Wood Sci. 2017;63(2):117–132. doi: 10.1007/s10086-016-1606-z.
  • Yang H, Yan R, Chen H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86(12–13):1781–1788. doi: 10.1016/j.fuel.2006.12.013.
  • Ei-Saied H, Abd-Alla, Nada MA. The thermal behaviour of lignins from wasted black pulping liquors. Polym Degrad Stabil. 1993;40(3):417–421.
  • Sun R, Tomkinson J, Lloyd Jones G. Fractional characterization of ash-AQ lignin by successive extraction with organic solvents from oil palm EFB fibre. Polym Degrad Stabil. 2000;68(1):111–119.
  • Glasser WG, Jain RK. Lignin derivatives I. Alkanoates. 1993;47:9.
  • CEN, D., TS 14918 2005 Solid Biofuels. Method for the Determination of Calorific Value. British Standards Institution, 2006.
  • Telmo C, Lousada J. Heating values of wood pellets from different species. Biomass Bioenergy. 2011;35(7):2634–2639. doi: 10.1016/j.biombioe.2011.02.043.
  • Demirbas A. Higher heating values of lignin types from wood and non-wood lignocellulosic biomasses. Energy Sources A. 2017;39(6):592–598. doi: 10.1080/15567036.2016.1248798.
  • Maksimuk Y, Antonava Z, Krouk V, Korsakova A, Kursevich V. Prediction of higher heating value based on elemental composition for lignin and other fuels. Fuel 2020;263. doi: 10.1016/j.fuel.2019.116727.
  • Li S, Willoughby JA, Rojas OJ. Oil-in-water emulsions stabilized by carboxymethylated lignins: properties and energy prospects. ChemSusChem 2016;9:2460–2469. doi: 10.1002/cssc.201600704.
  • Hu J, Xiao R, Shen D, Zhang H. Structural analysis of lignin residue from black liquor and its thermal performance in thermogravimetric-Fourier transform infrared spectroscopy. Bioresour Technol 2013;128:633–639. doi: 10.1016/j.biortech.2012.10.148.
  • Halleraker HV, Kalogiannis K, Lappas A, Castro RCA, Roberto IC, Mussatto SI, Barth T. The consistency of yields and chemical composition of HTL bio-oils from lignins produced by different preprocessing technologies. Energies (Basel) 2022;15. doi: 10.3390/en15134707.
  • Zhao X, Zhou H, Sikarwar VS, Zhao M, Park AHA, Fennell PS, Shen L, Fan LS. Biomass-based chemical looping technologies: the good, the bad and the future. Energy Environ Sci 2017;10:1885–1910. doi: 10.1039/c6ee03718f.
  • Palacio Lozano DC, Jones HE, Ramirez Reina T, Volpe R, Barrow MP. Unlocking the potential of biofuels: via reaction pathways in van Krevelen diagrams. Green Chemistry 2021;23:8949–8963. doi: 10.1039/d1gc01796a.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.