678
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhancing sustainability: co-pyrolysis of date palm branches and wastewater microalgae for tailored biochar production

, , , &
Pages 837-847 | Received 28 Aug 2023, Accepted 06 Jan 2024, Published online: 01 Feb 2024

References

  • Akhtar A, Krepl V, Ivanova T. A combined overview of combustion, pyrolysis, and gasification of biomass. Energy Fuels. 2018;32(7):7294–7318. doi: 10.1021/acs.energyfuels.8b01678.
  • Scarlat N, Fahl F, Dallemand JF, et al. A spatial analysis of biogas potential from manure in Europe. Renew Sustain Energy Rev. 2018;94:915–930. doi: 10.1016/j.rser.2018.06.035.
  • Tasnim F, Iqbal SA, Chowdhury AR. Biogas production from anaerobic co-digestion of cow manure with kitchen waste and water hyacinth. Renew Energy. 2017;109:434–439. doi: 10.1016/j.renene.2017.03.044.
  • Kamel S, El-Sattar HA, Vera D, et al. Bioenergy potential from agriculture residues for energy generation in Egypt. Renew Sustain Energy Rev. 2018;94:28–37. doi: 10.1016/j.rser.2018.05.070.
  • Valenti F, Porto SMC, Selvaggi R, et al. Evaluation of biomethane potential from by-products and agricultural residues co-digestion in Southern Italy. J Environ Manage. 2018;223:834–840. doi: 10.1016/j.jenvman.2018.06.098.
  • Li Y, Gupta R, Zhang Q, et al. Review of biochar production via crop residue pyrolysis: development and perspectives. Bioresour Technol. 2023;369:128423. doi: 10.1016/J.BIORTECH.2022.128423.
  • Gopu C, Gao L, Volpe M, et al. Valorizing municipal solid waste: waste to energy and activated carbons for water treatment via pyrolysis. J Anal Appl Pyrolysis. 2018;133:48–58. doi: 10.1016/j.jaap.2018.05.002.
  • Sipra AT, Gao N, Sarwar H. Municipal solid waste (MSW) pyrolysis for bio-fuel production: a review of effects of MSW components and catalysts. Fuel Process Technol. 2018;175:131–147. doi: 10.1016/j.fuproc.2018.02.012.
  • Fernandez A, Saffe A, Pereyra R, et al. Kinetic study of regional agro-industrial wastes pyrolysis using non-isothermal TGA analysis. Appl Therm Eng. 2016;106:1157–1164. doi: 10.1016/j.applthermaleng.2016.06.084.
  • Kumar Singh R, Ruj B, Jana A, et al. Pyrolysis of three different categories of automotive tyre wastes: product yield analysis and characterization. J Anal Appl Pyrolysis. 2018;135:379–389. doi: 10.1016/j.jaap.2018.08.011.
  • Mohan D, Sarswat A, Ok YS, et al. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review. Bioresour Technol. 2014;160:191–202. doi: 10.1016/j.biortech.2014.01.120.
  • Chen Y, Xu J, Lv Z, et al. Impacts of biochar and oyster shells waste on the immobilization of arsenic in highly contaminated soils. J Environ Manage. 2018;217:646–653. doi: 10.1016/j.jenvman.2018.04.007.
  • Li S, Liang C, Shangguan Z. Effects of apple branch biochar on soil C mineralization and nutrient cycling under two levels of N. Sci Total Environ. 2017;607-608:109–119. doi: 10.1016/j.scitotenv.2017.06.275.
  • Wang M, Zhu Y, Cheng L, et al. Review on utilization of biochar for metal-contaminated soil and sediment remediation. J Environ Sci (China). 2017;63:156–173. doi: 10.1016/j.jes.2017.08.004.
  • Thines KR, Abdullah EC, Mubarak NM, et al. Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application: a review. Renew Sustain Energy Rev. 2017;67:257–276. doi: 10.1016/j.rser.2016.09.057.
  • Wongrod S, Simon S, Guibaud G, et al. Lead sorption by biochar produced from digestates: consequences of chemical modification and washing. J Environ Manage. 2018;219:277–284. doi: 10.1016/j.jenvman.2018.04.108.
  • Saavedra Rios CdM, Simone V, Simonin L, et al. Biochars from various biomass types as precursors for hard carbon anodes in sodium-ion batteries. Biomass Bioenergy. 2018;117:32–37. doi: 10.1016/j.biombioe.2018.07.001.
  • Izanzar I, Dahbi M, Kiso M, et al. Hard carbons issued from date palm as efficient anode materials for sodium-ion batteries. Carbon N Y. 2018;137:165–173. doi: 10.1016/j.carbon.2018.05.032.
  • Yu KL, Show PL, Ong HC, et al. Microalgae from wastewater treatment to biochar – feedstock preparation and conversion technologies. Energy Convers Manag. 2017;150:1–13. doi: 10.1016/j.enconman.2017.07.060.
  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM. Microalgae and wastewater treatment. Saudi J Biol Sci. 2012;19(3):257–275. doi: 10.1016/j.sjbs.2012.04.005.
  • Choi HJ, Lee SM. Effects of microalgae on the removal of nutrients from wastewater: various concentrations of chlorella vulgaris. Environ Eng Res. 2012;17:3–8. doi: 10.4491/eer.2012.17.S1.S3.
  • Mehrabadi A, Craggs R, Farid MM. Wastewater treatment high rate algal ponds (WWT HRAP) for low-cost biofuel production. Bioresour Technol. 2015;184:202–214. doi: 10.1016/j.biortech.2014.11.004.
  • Bordoloi N, Goswami R, Kumar M, et al. Biosorption of Co (II) from aqueous solution using algal biochar: kinetics and isotherm studies. Bioresour Technol. 2017;244(Pt 2):1465–1469. doi: 10.1016/j.biortech.2017.05.139.
  • Son EB, Poo KM, Chang JS, et al. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass. Sci Total Environ. 2018;615:161–168. doi: 10.1016/j.scitotenv.2017.09.171.
  • Zheng H, Guo W, Li S, et al. Adsorption of p-nitrophenols (PNP) on microalgal biochar: analysis of high adsorption capacity and mechanism. Bioresour Technol. 2017;244(Pt 2):1456–1464. doi: 10.1016/j.biortech.2017.05.025.
  • Al-Wabel MI, Rafique MI, Ahmad M, et al. Pyrolytic and hydrothermal carbonization of date palm leaflets: characteristics and ecotoxicological effects on seed germination of lettuce. Saudi J Biol Sci. 2018;26(4):665–672. doi: 10.1016/j.sjbs.2018.05.017.
  • Mahdi Z, Yu QJ, El Hanandeh A. Investigation of the kinetics and mechanisms of nickel and copper ions adsorption from aqueous solutions by date seed derived biochar. J Environ Chem Eng. 2018;6(1):1171–1181. doi: 10.1016/j.jece.2018.01.021.
  • Usman A, Sallam A, Zhang M, et al. Sorption process of date palm biochar for aqueous cd (II) removal: efficiency and mechanisms. Water Air Soil Pollut. 2016;227:449. doi: 10.1007/s11270-016-3161-z.
  • Tan S, Zhou G, Yang Q, et al. Utilization of current pyrolysis technology to convert biomass and manure waste into biochar for soil remediation: a review. Sci Total Environ. 2023;864:160990. doi: 10.1016/J.SCITOTENV.2022.160990.
  • Huang HJ, Yang T, Lai Fy, et al. Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar. J Anal Appl Pyrolysis. 2017;125:61–68. doi: 10.1016/j.jaap.2017.04.018.
  • Meng J, Liang S, Tao M, et al. Chemical speciation and risk assessment of Cu and Zn in biochars derived from co-pyrolysis of pig manure with rice straw. Chemosphere. 2018;200:344–350. doi: 10.1016/j.chemosphere.2018.02.138.
  • Chen W, Chen Y, Yang H, et al. Co-pyrolysis of lignocellulosic biomass and microalgae: products characteristics and interaction effect. Bioresour Technol. 2017;245(Pt A):860–868. doi: 10.1016/j.biortech.2017.09.022.
  • Duan P, Jin B, Xu Y, et al. Co-pyrolysis of microalgae and waste rubber tire in supercritical ethanol. Chem Eng J. 2015;269:262–271. doi: 10.1016/j.cej.2015.01.108.
  • Chen W, Yang H, Chen Y, et al. Influence of biochar addition on nitrogen transformation during co-pyrolysis of algae and lignocellulosic biomass. Environ Sci Technol. 2018;52(16):9514–9521. doi: 10.1021/acs.est.8b02485.
  • Channiwala SA, Parikh PP. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel. 2002;81(8):1051–1063. doi: 10.1016/S0016-2361(01)00131-4.
  • Lu JJ, Chen WH. Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis. Appl Energy. 2015;160:49–57. doi: 10.1016/j.apenergy.2015.09.026.
  • Chen WH, Huang MY, Chang JS, et al. An energy analysis of torrefaction for upgrading microalga residue as a solid fuel. Bioresour Technol. 2015;185:285–293. doi: 10.1016/j.biortech.2015.02.095.
  • Chen W, Li K, Xia M, et al. Catalytic deoxygenation co-pyrolysis of bamboo wastes and microalgae with biochar catalyst. Energy. 2018;157:472–482. doi: 10.1016/j.energy.2018.05.149.
  • Spokas KA. Review of the stability of biochar in soils: predictability of O: C molar ratios. Carbon Manag. 2010;1(2):289–303. doi: 10.4155/cmt.10.32.
  • Leng L, Huang H, Li H, et al. Biochar stability assessment methods: a review. Sci Total Environ. 2019;647:210–222. doi: 10.1016/j.scitotenv.2018.07.402.
  • Jindo K, Mizumoto H, Sawada Y, et al. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences. 2014;11(23):6613–6621. doi: 10.5194/bg-11-6613-2014.
  • Akhtar A, Jiříček I, Ivanova T, et al. Carbon conversion and stabilisation of date palm and high rate algal pond (microalgae) biomass through slow pyrolysis. Int J Energy Res. 2019;43(9):4403–4416. doi: 10.1002/er.4565.
  • Kim KH, Kim JY, Cho TS, et al. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresour Technol. 2012;118:158–162. doi: 10.1016/j.biortech.2012.04.094.
  • Uchimiya M, Wartelle LH, Klasson KT, et al. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J Agric Food Chem. 2011;59(6):2501–2510. doi: 10.1021/jf104206c.
  • Lee Y, Eum PRB, Ryu C, et al. Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1. Bioresour Technol. 2013;130:345–350. doi: 10.1016/j.biortech.2012.12.012.
  • Chiodo V, Zafarana G, Maisano S, et al. Pyrolysis of different biomass: direct comparison among Posidonia Oceanica, Lacustrine Alga and White-Pine. Fuel. 2016;164:220–227. doi: 10.1016/j.fuel.2015.09.093.
  • Jouiad M, Al-Nofeli N, Khalifa N, et al. Characteristics of slow pyrolysis biochars produced from rhodes grass and fronds of edible date palm. J Anal Appl Pyrolysis. 2015;111:183–190. doi: 10.1016/j.jaap.2014.10.024.
  • Leng LJ, Yuan XZ, Huang HJ, et al. Characterization and application of bio-chars from liquefaction of microalgae, lignocellulosic biomass and sewage sludge. Fuel. Process Technol. 2015;129:8–14. doi: 10.1016/j.fuproc.2014.08.016.
  • Rousset P, Aguiar C, Labbé N, et al. Enhancing the combustible properties of bamboo by torrefaction. Bioresour Technol. 2011;102(17):8225–8231. doi: 10.1016/j.biortech.2011.05.093.
  • Phukan MM, Chutia RS, Konwar BK, et al. Microalgae Chlorella as a potential bio-energy feedstock. Appl Energy. 2011;88(10):3307–3312. doi: 10.1016/j.apenergy.2010.11.026.
  • Park SW, Jang CH, Baek KR, et al. Torrefaction and low-temperature carbonization of woody biomass: evaluation of fuel characteristics of the products. Energy. 2012;45(1):676–685. doi: 10.1016/j.energy.2012.07.024.
  • Huang P, Ge C, Feng D, et al. Effects of metal ions and pH on ofloxacin sorption to cassava residue-derived biochar. Sci Total Environ. 2018;616–617:1384–1391. doi: 10.1016/j.scitotenv.2017.10.177.
  • Wang X, Gao J, Sun Z, et al. Effect of nitrogen doping on reactivity of coal char in reducing NO. Can J Chem Eng. 2018;96(4):873–880. doi: 10.1002/cjce.23022.
  • Demir M, Saraswat SK, Gupta RB. Hierarchical nitrogen-doped porous carbon derived from lecithin for high-performance supercapacitors. RSC Adv. 2017;7(67):42430–42442. doi: 10.1039/C7RA07984B.
  • Sait HH, Hussain A, Salema AA, et al. Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresour Technol. 2012;118:382–389. doi: 10.1016/j.biortech.2012.04.081.
  • Kumar S, Nayan NK, Singh RK. Kinetics of the pyrolysis and combustion characteristics of non-edible oilseeds (Karanja and Neem Seed) using thermogravimetric analysis. Energy Sources A Recovery Util Environ Eff. 2015;37(21):2352–2359. doi: 10.1080/15567036.2012.748106.
  • Yoder J, Galinato S, Granatstein D, et al. Economic tradeoff between biochar and bio-oil production via pyrolysis. Biomass Bioenergy. 2011;35(5):1851–1862. doi: 10.1016/j.biombioe.2011.01.026.