258
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Infrared thermography to select commercial varieties of maize in relation to drought adaptation

, , , , &
Pages 54-67 | Received 09 May 2016, Accepted 01 Jul 2016, Published online: 27 Sep 2016

References

  • United Nations Department of Economic and Social Affairs Population Division [Internet]; [cited 2015 December 12]. Available from: http://www.unpopulation.org.
  • García-Tejero IF, Durán-Zuazo VH, Muriel-Fernández JL. Towards sustainable irrigated Mediterranean agriculture: implications for water conservation in semi-arid environments. Water Int. 2014;39:635–648. doi:10.1080/02508060.2014.931753.10.1080/02508060.2014.931753
  • Plant phenotyping [Internet]; [cited 2016 January 2]. Available from: www.plantphenomics.com.
  • Walter A, Silk WK, Schurr U. Environmental effects on spatial and temporal patterns of leaf and root growth. Ann. Rev. Plant Biol. 2009;60:279–304.10.1146/annurev.arplant.59.032607.092819
  • Kumar P, Huang C, Cai J, et al. Root phenotyping by root tip detection and classification through statistical learning. Plant Soil. 2014;380:193–209.10.1007/s11104-014-2071-3
  • Golzarian MR, Frick RA, Rajendran K, et al. Accurate inference of shoot biomass from high-throughput images of cereal plants. Plant Methods. 2011;7:1–11.
  • Jansen M, Gilmer F, Biskup B, et al. Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via grow screen fluoro allows detection of stress tolerance in arabidopsis thaliana and other rosette plants. Funct. Plant Biol. 2009;36:902–914.10.1071/FP09095
  • Monforte AJ, Diaz AI, Caño-Delgado A, et al. The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. J. Exp. Bot.; 2014;65:4635–4637. doi:10.1093/jxb/eru017.
  • Rao NKS, Laxman RH. Phenotyping horticultural crops for abiotic stress tolerance. In: Singh HCP, Rao NKS, Shivashankar KS, editors. Climate-resilient horticulture: adaptation and mitigation strategies. Berlin: Springer; 2013. p. 147–157.
  • Tagne A, Feujio TP, Sonna, C. Essential oil and plant extracts as potential substitutes to synthetic fungicides in the control of fungi. In: ENDURE International Conference 2008 Diversifying crop protection; 2008 October 12–15; La Grande-Motte, France; Oral presentations
  • Farré I, Faci JM. Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment. Agric. Water Manage. 2006;83:135–143.10.1016/j.agwat.2005.11.001
  • Domínguez A, de Juan JA, Tarjuelo JM, et al. Determination of optimal regulated deficit irrigation strategies for maize in a semi-arid environment. Agric. Water Manage. 2012;110:67–77.10.1016/j.agwat.2012.04.002
  • Pandey RK, Maranville JW, Admou A. Deficit irrigation and nitrogen effects on maize in a Sahelian environment. Agric. Water Manage. 2000;46:1–13.10.1016/S0378-3774(00)00073-1
  • Carmo-Silva A, Soares A, Marques da Silva J, et al. Photosynthetic responses of three C 4 grasses of different metabolic subtypes to water deficit. Funct. Plant Biol. 2007;34:204–213.10.1071/FP06278
  • Nayyar H. Accumulation of osmolytes and osmotic adjustment in water-stressed wheat (Triticum aestivum) and maize (Zea mays) as affected by calcium and its antagonists. Environ. Exp. Bot. 2003;50:253–264.10.1016/S0098-8472(03)00038-8
  • Phenodays [Internet]; [cited 2014 October 10]; 2014. Available from: http://www.phenodays.com/
  • Fiorani F, Schurr U. Future scenarios for plant phenotyping. Ann. Rev. Plant Biol. 2013;64:267–291.10.1146/annurev-arplant-050312-120137
  • Li L, Zhang Q, Huang D. A review of imaging techniques for plant phenotyping. Sensors. 2014;14:20078–20111.10.3390/s141120078
  • Arvidsson S, Pérez-Rodríguez P, Mueller-Roeber BA. A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects. New Phytol. 2011;191:895–907.10.1111/nph.2011.191.issue-3
  • Deikman J, Petracek M, Heard JE. Drought tolerance through biotechnology: improving translation from the laboratory to farmers’ fields. Curr. Opin. Biotechnol. 2012;23:243–250.10.1016/j.copbio.2011.11.003
  • Yang W, Duan L, Chen G, et al. Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies. Curr. Opin. Plant Biol. 2013;16:180–187.10.1016/j.pbi.2013.03.005
  • García-Tejero IF, Costa JM, Lima RSN, et al. Thermal imaging to phenotype traditional maize landraces for drought tolerance. Com. Sci. 2015;6:334–343.
  • García-Tejero IF, Durán-Zuazo VH, Muriel-Fernández JL, et al. Water and sustainable agriculture. Springer briefs in agriculture. Dordrecht: Springer; 2011. 94pp.
  • James RA, Siraut XRR. Infrared thermography in plant phenotyping for salinity tolerance. In: Plant salt tolerance: methods and protocols. Vol. 913, Methods in molecular biology series; New York: Springer; 2012. p. 173–189.
  • Jones HG, Vaughan RA. Remote sensing of vegetation: principles, techniques and applications. Oxford: Oxford University Press; 2010.
  • Jones HG, Serraj R, Loveys BR, et al. Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct. Plant Biol. 2009;36:978–989.10.1071/FP09123
  • Liu Y, Subhash C, Yan J, et al. Maize leaf temperature responses to drought: thermal imaging and quantitative trait loci (QTL) mapping. Environ. Exp. Bot. 2011;71:158–165.10.1016/j.envexpbot.2010.11.010
  • Costa JM, Ortuño MF, Lopes CM, et al. Grapevine varieties exhibiting differences in stomatal response to water deficit. Funct. Plant Biol. 2012;39:179–189.10.1071/FP11156
  • Berni JAJ, Zarco-Tejada PJ, Sepulcre-Cantó G, et al. Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery. Remote Sens. Environ. 2009a;113:2380–2388.10.1016/j.rse.2009.06.018
  • García-Tejero IF, Durán-Zuazo VH, Muriel-Fernández JL, et al. Linking canopy temperature and trunk diameter fluctuations with other physiological water status tools for water stress management in citrus orchards. Funct. Plant Biol. 2011;38:106–117.10.1071/FP10202
  • Urrestarazu M. Infrared thermography used to diagnose the effects of salinity in a soilless culture. Quant. InfraRed Thermogr. J. 2013;10:1–8.10.1080/17686733.2013.763471
  • Morales I, Álvaro JE, Urrestarazu M. Contribution of thermal imaging to fertigation in soilless culture. J. Thermal Anal. Calorim. 2014;116:1033–1039.10.1007/s10973-013-3529-x
  • Morales I, Urrestarazu M. Thermography study of moderate electrical conductivity and nutrient solution distribution system effects on grafted tomato soilless culture. HortSci. 2013;48:1508–1512.
  • Jones HG, Stoll M, Santos T, et al. Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine. J. Exp. Bot. 2002;53:1–12.
  • Pou A, Diago MP, Medrano H, et al. Validation of thermal indices for water status identification in grapevine. Agric. Water Manage. 2014;134:60–72.10.1016/j.agwat.2013.11.010
  • Zia S, Spohrer K, Merkt N, et al. Non-invasive water status detection in grapevine (Vitis vinifera L.) by thermograph. Int. J. Agric Biol. Eng. 2009;2:46–54.
  • Fuentes S, De Bei R, Pech J, et al. Computational water stress indices obtained from thermal image analysis of grapevine canopies. Irrig. Sci. 2012;30:523–536.10.1007/s00271-012-0375-8
  • Bellvert J, Marsal J, Girona J, et al. Seasonal evolution of crop water stress index in grapevine varieties determined with high resolution remote sensing thermal imagery. Irrig. Sci. 2015;33:81–93.10.1007/s00271-014-0456-y
  • Schreiber U, Schliwa U, Bilger W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosyn. Res. 1986;10:51–62.10.1007/BF00024185
  • Sadras VO, Reynolds MP, de la Vega AJ, et al. Phenotypic plasticity of yield and phenology in wheat, sunflower and grapevine. Field Crops Res. 2009;110:242–250.10.1016/j.fcr.2008.09.004
  • Jongdee B, Fukai S, Cooper M. Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crop. Res. 2002;76:153–163.10.1016/S0378-4290(02)00036-9
  • Jones HG. Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agric. Forest Met. 1999;95:139–149.10.1016/S0168-1923(99)00030-1
  • Merlot S, Mustilli AC, Genty B, et al. Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J. 2002;30:601–609.10.1046/j.1365-313X.2002.01322.x
  • García-Tejero IF, Muriel-Fernández JL, Durán-Zuazo VH, et al. Uso eficiente del agua en la agricultura [Efficient water use in agriculture]. Seville: Instituto de Investigación y Formación Agraria y Pesquera. CAPDR; 2013. 104pp.
  • Costa JM, Grant OM, Chaves MM. Thermography to explore plant-environment interactions. J. Exp. Bot. 2013;64:3937–3949.10.1093/jxb/ert029
  • Masuka B, Araus JL, Das B, et al. Phenotyping for abiotic stress tolerance in maize. J. Int. Plant Biol. 2012;54:238–249.10.1111/jipb.2012.54.issue-4
  • García-Tejero I, Durán-Zuazo VH, Muriel-Fernández JL. Thermal imaging to assess the plant water status under arid and semi-arid conditions. In: Ferguson G., editor. Arid and semi-arid environments. Biogediversity, impacts, and environmental challenges. NJ: Nova Publishers; 2015. p. 15–35.
  • García-Tejero I, Durán-Zuazo VH, Arriaga J, et al. Approach to assess infrared thermal imaging of almond trees under water-stress conditions. Fruits. 2012;67:463–474.10.1051/fruits/2012040
  • García-Tejero IF, Rodríguez VM, Ponce JR, et al. Estimating almond crop coefficients and physiological response to water stress in semiarid environments (SW Spain). J. Agric. Sci. Technol. 2015;17:1255–1266.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.