164
Views
0
CrossRef citations to date
0
Altmetric
Articles

The wavelet finite element method in the dynamic analysis of a functionally graded beam resting on a viscoelastic foundation subjected to a moving load

&
Pages 171-209 | Received 31 Jul 2015, Accepted 16 Sep 2015, Published online: 17 Nov 2015

References

  • Alshorbagy, A. E., Eltaher, M. A., & Mahmoud, F. F. (2011, July). Free vibration characteristics of a functionally graded beam by finite element method. Applied Mathematical Modelling, 35, 412–425.10.1016/j.apm.2010.07.006
  • Aydogdu, M., & Taskin, V. (2007). Free vibration analysis of functionally graded beams with simply supported edges. Materials and Design, 28, 1651–1656.10.1016/j.matdes.2006.02.007
  • Bathe, K. J. (1996). Finite element procedures. (1st ed.). New Jersey: Prentice Hall.
  • Chakraborty, A., Gopalakrishnan, S., & Reddy, J. N. (2003). A new beam finite element for the analysis of functionally graded materials. International Journal of Mechanical Sciences, 45, 519–539.10.1016/S0020-7403(03)00058-4
  • Chen, X., He, Z., Xiang, J., & Li, B. (2006). A dynamic multiscale lifting computation method using Daubechies wavelet. Journal of Computational and Applied Mathematics, 188, 228–245.10.1016/j.cam.2005.04.015
  • Chen, W.-H., & Wu, C.-W. (1995). A spline wavelets element method for frame structures vibration. Computational Mechanics, 16, 11–21.10.1007/BF00369881
  • Chen, X., Yang, S., Ma, J., & He, Z. (2004). The construction of wavelet finite element and its application. Finite Elements in Analysis and Design, 40, 541–554.10.1016/S0168-874X(03)00077-5
  • Chui, C. K., & Quak, E. (1992). Wavelets on a bound interval. Numerical Methods in Approximation Theory, 1, 53–75.10.1007/978-3-0348-8619-2
  • Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 41, 909–996.10.1002/(ISSN)1097-0312
  • Díaz, L. A., Martín, M. T., & Vampa, V. (2009). Daubechies wavelet beam and plate finite elements. Finite Elements in Analysis and Design, 45, 200–209.10.1016/j.finel.2008.09.006
  • Dimitrovová, Z., & Rodrigues, A. F. (2012). Critical velocity of a uniformly moving load. Advances in Engineering Software, 50, 44–56.10.1016/j.advengsoft.2012.02.011
  • Fryba, L. (1999). Vibration of solids and structures under moving loads (3rd ed.). (E. Stott, Ed.) London: Thomas Telford.10.1680/vosasuml.35393
  • He, W. Y., & Ren, W. X. (2012). Finite element analysis of beam structures based on trigonometric wavelet. Finite Elements in Analysis and Design, 51, 59–66.10.1016/j.finel.2011.11.005
  • Jha, D. K., Kant, T., & Singh, R. K. (2013, February). A critical review of recent research on functionally graded plates. Composite Structures, 96, 833–849.10.1016/j.compstruct.2012.09.001
  • Kadoli, R., Akhtar, K., & Ganesan, N. (2008). Static analysis of functionally graded beams using higher order shear deformation theory. Applied Mathematical Modelling, 32, 2509–2525.10.1016/j.apm.2007.09.015
  • Khalili, S. M., Jafari, A. A., & Eftekhari, S. A. (2010). A mixed Ritz-DQ method for forced vibration of functionally graded beams carrying moving loads. Composite Structures, 92, 2497–2511.10.1016/j.compstruct.2010.02.012
  • Ko, J., Kurdila, A. J., & Pilant, M. S. (1995). A class of finite element methods based on orthonormal, compactly supported wavelets. Computational Mechanics, 16, 235–244.10.1007/BF00369868
  • Koizumi, M. (1997). FGM activities in Japan. Composites Part B: Engineering, 28(1–2), 1–4.10.1016/S1359-8368(96)00016-9
  • Latto, A., Resnikoff, H. L., & Tenenbaum, E. (1991). The evaluation of connection coefficients of compactly supported wavelets. In Y. Maday (Ed.), Proceedings of the French-USA Workshop on Wavelets and Turbulence. New York, NY: Springer-Verlag.
  • Li, B., & Chen, X. (2014). Wavelet-based numerical analysis: A review and classification. Finite Elements in Analysis and Design, 81, 14–31.10.1016/j.finel.2013.11.001
  • Ma, J., Xue, J., Yang, S., & He, Z. (2003). A study of the construction and application of a Daubechies wavelet-based beam element. Finite Elements in Analysis and Design, 39, 965–975.10.1016/S0168-874X(02)00141-5
  • Pradhan, K. K., & Chakraverty, S. (2013). Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh–Ritz method. Composites Part B: Engineering, 51, 175–184.10.1016/j.compositesb.2013.02.027
  • Quak, E., & Weyrich, N. (1994). Decomposition and reconstruction algorithms for spline wavelets on a bounded interval. Applied and Computational Harmonic Analysis, 1, 217–231.10.1006/acha.1994.1009
  • Şimşek, M. (2010a). Vibration analysis of a functionally graded beam under a moving mass by using different beam theories. Composite Structures, 92, 904–917.10.1016/j.compstruct.2009.09.030
  • Şimşek, M. (2010b). Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load. Composite Structures, 92, 2532–2546.10.1016/j.compstruct.2010.02.008
  • Şimşek, M., & Kocatürk, T. (2009). Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load. Composite Structures, 90, 465–473.10.1016/j.compstruct.2009.04.024
  • Strang, G. (1989). Wavelet and dilation equations: A brief introduction. Society for Industrial and Applied Mathematics Review, 31, 614–627.
  • Wakashima, K., Hirano, T., & Niino, M. (1990). Space applications of advanced structural materials. European space agency: Proceedings of an International Symposium, (pp. 303–397), Paris, France.
  • Xiang, J. W., Chen, X. F., He, Z. J., & Dong, H. B. (2007). The construction of 1D wavelet finite elements for structural analysis. Computational Mechanics, 40, 325–339.10.1007/s00466-006-0102-5
  • Yang, Z., Chen, X., Li, X., Jiang, Y., Miao, H., & He, Z. (2014). Wave motion analysis in arch structures via wavelet finite element method. Journal of Sound and Vibration, 333, 446–469.10.1016/j.jsv.2013.09.011
  • Zhou, Y., Wang, J., & Zheng, X. (1998). Applications of wavelet Galerkin FEM to bending of beams and plate structures. Applied Mathematics and Mechanics, 19, 745–755.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.