71
Views
2
CrossRef citations to date
0
Altmetric
Articles

Influence of the mechanical force and the magnetic field on fibre-reinforced medium for three-phase-lag model

&
Pages 210-231 | Received 29 Sep 2015, Accepted 30 Dec 2015, Published online: 09 Feb 2016

References

  • Abbas, I. A. (2014). Three-phase lag model on thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a cylindrical cavity. Journal of Computational and Theoretical Nanoscience, 11, 987–992.10.1166/jctn.2014.3454
  • Abd-Alla, A. M., Abo-Dahab, S. M., & Bayones, F. S. (2015). Wave propagation in fibre-reinforced anisotropic thermoelastic medium subjected to gravity field. Structural Engineering and Mechanics, 53, 277–296.10.12989/sem.2015.53.2.277
  • Bagri, A., & Eslami, M. R. (2004). Generalized coupled thermoelasticity of disks based on the Lord–Shulman model. Journal of Thermal Stresses, 27, 691–704.10.1080/01495730490440127
  • Bagri, A., & Eslami, M. R. (2007a). Analysis of thermoelastic waves in functionally graded hollow spheres based on the Green-Lindsay theory. Journal of Thermal Stresses, 30, 1175–1193.10.1080/01495730701519508
  • Bagri, A., & Eslami, M. R. (2007b). A unifed generalized themoelasticity formulation; application to thick functionally graded cylinders. Journal of Thermal Stresses, 30, 911–930.10.1080/01495730701496079
  • Belfield, A. J., Rogers, T. G., & Spencer, A. J. M. (1983). Stress in elastic plates reinforced by fibres lying in concentric circles. Journal of the Mechanics and Physics of Solids, 31, 25–54.10.1016/0022-5096(83)90018-2
  • Biot, M. A. (1956). Thermoelasticity and irreversible thermodynamics. Journal of Applied Physics, 27, 240–253.10.1063/1.1722351
  • Chandrasekharaiah, D. S. (1998). Hyperbolic thermoelasticity: A review of recent literature. Applied Mechanics Reviews, 51, 8–16.
  • Ezzat, M. A., El-Karamany, A., & Samaan, A. A. (2004). The dependence of the modulus of elasticity on reference temperature in generalized thermoelasticity with thermal relaxation. Applied Mathematics and Computation, 147, 169–189.10.1016/S0096-3003(02)00660-4
  • Ghosh, M. K., & Kanoria, M. (2008). Generalized thermoelastic problem of a spherically isotropic infinite elastic medium containing a spherical cavity. Journal of Thermal Stresses, 31, 665–679.10.1080/01495730802193872
  • Ghosh, M. K., & Kanoria, M. (2009). Analysis of thermoelastic response in a functionally graded spherically isotropic hollow sphere based on Green-Lindsay theory. Acta Mechanica, 207, 51–67.10.1007/s00707-008-0093-8
  • Green, A. E., & Lindsay, K. A. (1972). Thermoelasticity. Journal of Elasticity, 2, 1–7.10.1007/BF00045689
  • Green, A. E., & Naghdi, P. M. (1991). A re-examination of the basic postulates of thermomechanics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 432, 171–194.10.1098/rspa.1991.0012
  • Green, A. E., & Naghdi, P. M. (1992). On undamped heat waves in an elastic solid. Journal of Thermal Stresses, 15, 253–264.10.1080/01495739208946136
  • Green, A. E., & Naghdi, P. M. (1993). Thermoelasticity without energy dissipation. Journal of Elasticity, 31, 189–208.10.1007/BF00044969
  • Hetnarski, R. B., & Ignaczak, J. (1994). Generalized thermoelasticity: Response of semi-space to a short laser pulse. Journal of Thermal Stresses, 17, 377–396.10.1080/01495739408946267
  • Jin, Z. H., & Batra, R. C. (1998). Thermal fracture of ceramics with temperature-dependent properties. Journal of Thermal Stresses, 21, 157–176.10.1080/01495739808956141
  • Kar, A., & Kanoria, M. (2007). Thermo-elastic interaction with energy dissipation in an unbounded body with a spherical hole. International Journal of Solids and Structures, 44, 2961–2971.10.1016/j.ijsolstr.2006.08.030
  • Kar, A., & Kanoria, M. (2009). Generalized thermo-visco-elastic problem of a spherical shell with three-phase-lag effect. Applied Mathematical Modelling, 33, 3287–3298.10.1016/j.apm.2008.10.036
  • Kumar, A., & Kumar, R. (2015). A domain of influence theorem for thermoelasticity with three-phase-lag model. Journal of Thermal Stresses, 38, 744–755.10.1080/01495739.2015.1040311
  • Lekhnitskii, S. (1980). Theory of elasticity of an anisotropic body. Moskow: Mir.
  • Lord, H. W., & Shulman, Y. (1967). A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids, 15, 299–309.10.1016/0022-5096(67)90024-5
  • Montanaro, A. (1999). On singular surfaces in isotropic linear thermoelasticity with initial stress. The Journal of the Acoustical Society of America, 106, 1586–1588.10.1121/1.427154
  • Noda, N. (1986). Thermal Stresses in materials with temperature-dependent properties. In R. B. Hetnaraski (Ed.), Thermal stresses I (pp. 391–483). North-Holland, Amsterdam.
  • Othman, M. I. A. (2000). Lord-Shulman theory under the dependence of the modulus of elasticity on the reference temperature in two dimensional generalized thermoelasticity. Journal of Thermal Stresses, 25, 1027–1045.
  • Othman, M. I. A., & Atwa, S. Y. (2014). Effect of rotation on a fiber-reinforced thermo-elastic under Green–Naghdi theory and influence of gravity. Meccanica, 49, 23–36.10.1007/s11012-013-9748-1
  • Othman, M. I. A., & Said, S. M. (2013). Plane waves of a fiber-reinforcement magneto-thermoelastic comparison of three different theories. International Journal of Thermophysics, 34, 366–383.10.1007/s10765-013-1417-z
  • Othman, M. I. A., Lotfy, Kh., Said, S. M., & Osman, B. (2012). Wave propagation of fiber-reinforced micropolar thermoelastic medium with voids under three theories. Journal of Applied Mathematics and Mechanics, 8, 52–69.
  • Othman, M. I. A., Elmaklizi, Y. D., & Said, S. M. (2013). Generalized thermoelastic medium with temperature-dependent properties for different theories under the effect of gravity field. International Journal of Thermophysics, 34, 521–537.10.1007/s10765-013-1425-z
  • Quintanilla, R., & Racke, R. (2008). A note on stability in three-phase-lag heat conduction. International Journal of Heat and Mass Transfer, 51, 24–29.10.1016/j.ijheatmasstransfer.2007.04.045
  • Roy Choudhuri, S. K. (2007). On a thermoelastic three-phase-lag model. Journal of Thermal Stresses, 30, 231–238.
  • Roy Choudhuri, S. K., & Dutta, P. S. (2005). Thermoelastic interaction without energy dissipation in an infinite solid with distributed periodically varying heat sources. International Journal of Solids and Structures, 42, 4192–4203.
  • Sengupta, P. R., & Nath, S. (2001). Surface waves in fibre-reinforced anisotropic elastic media. Sãdhanã, 26, 363–370.
  • Singh, B. (2006). Wave propagation in thermally conducting linear fibre-reinforced composite materials. Archive of Applied Mechanics, 75, 513–520.10.1007/s00419-005-0438-x
  • Tzou, D. Y. (1995). A unified field approach for heat conduction from macro- to micro-scales. Journal of Heat Transfer, 117, 8–16.10.1115/1.2822329
  • Wang, Y. Z., Liu, D., Wang, Q., & Zhou, J. Z. (2015). Fractional order theory of thermoelasticity for elastic medium with variable material properties. Journal of Thermal Stresses, 38, 665–676.10.1080/01495739.2015.1015840
  • Zenkour, A. M., & Abbas, I. A. (2014). Nonlinear transient thermal stress analysis of temperature-dependent hollow cylinders using a finite element model. International Journal of Structural Stability and Dynamics, 14, 1–17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.