117
Views
0
CrossRef citations to date
0
Altmetric
Articles

Numerical simulations of elastic capsules with nucleus in shear flow

, , ORCID Icon & ORCID Icon
Pages 131-153 | Received 15 Sep 2016, Accepted 02 Feb 2017, Published online: 03 Mar 2017

References

  • Adams, J. C., & Swarztrauber, P. N. (1999). Spherepack 3.0: A model development facility. Monthly Weather Review, 127, 1872–1878.
  • Ardekani, M. N., Costa, P., Breugem, W.-P., & Brandt, L. (2016). Numerical study of the sedimentation of spheroidal particles. arXiv preprint arXiv:1602.05769.
  • Bannister, L., & Mitchell, G. (2003). The ins, outs and roundabouts of malaria. Trends in Parasitology, 19, 209–213.
  • Chang, K.-S., & Olbricht, W. L. (1993). Experimental studies of the deformation and breakup of a synthetic capsule in steady and unsteady simple shear flow. Journal of Fluid Mechanics, 250, 609–633.
  • Breugem, W.-P. (2012). A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. Journal of Computational Physics, 231, 4469–4498.
  • Caille, N., Tardy, Y., & Meister, J.-J. (1998). Assessment of strain field in endothelial cells subjected to uniaxial deformation of their substrate. Annals of Biomedical Engineering, 26, 409–416.
  • Caille, N., Thoumine, O., Tardy, Y., & Meister, J.-J. (2002). Contribution of the nucleus to the mechanical properties of endothelial cells. Journal of Biomechanics, 35, 177–187.
  • Chorin, A. J. (1968). Numerical solution of the Navier--Stokes equations. Mathematics of Computation, 22, 745–762.
  • Cooke, B. M., Mohandas, N., & Coppel, R. L. (2001). The malaria-infected red blood cell: Structural and functional changes. Advances in Parasitology, 50, 1–86.
  • Dodd, M. S., & Ferrante, A. (2014). A fast pressure-correction method for incompressible two-fluid flows. Journal of Computational Physics, 273, 416–434.
  • Fischer, T. (1977). Tank tread motion of red-cell membranes in viscometric flow-behavior of intracellular and extracellular markers (with film). Blood Cells, 3, 351–365.
  • Fischer, T. M., Stohr-Lissen, M., & Schmid-Schonbein, H. (1978). The red cell as a fluid droplet: Tank tread-like motion of the human erythrocyte membrane in shear flow. Science, 202, 894–896.
  • Freund, J. B. (2007). Leukocyte margination in a model microvessel. Physics of Fluids (1994-present), 19, 023301.
  • Freund, J. B., & Zhao, H. (2010). A high-resolution fast boundary-integral method for multiple interacting blood cells. Computational Hydrodynamics of Capsules and Biological Cells, 1, 71.
  • Gaehtgens, P., Dührssen, C., & Albrecht, K. H. (1979). Motion, deformation, and interaction of blood cells and plasma during flow through narrow capillary tubes. Blood Cells, 6, 799–817.
  • Galbraith, C. G., Skalak, R., & Chien, S. (1998). Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motility and the Cytoskeleton, 40, 317–330.
  • Gao, T., Hu, H. H., & Casta\~{n}eda, P. P. (2011). Rheology of a suspension of elastic particles in a viscous shear flow. Journal of Fluid Mechanics, 687, 209–237.
  • Gao, T., Hu, H. H., & Casta\~{n}eda, P. P. (2013). Dynamics and rheology of elastic particles in an extensional flow. Journal of Fluid Mechanics, 715, 573–596.
  • Goldsmith, H. L., & Marlow, J. (1972). Flow behaviour of erythrocytes. I. rotation and deformation in dilute suspensions. Proceedings of the Royal Society of London B: Biological Sciences, 182, 351–384.
  • Guilak, F. (1995). Compression-induced changes in the shape and volume of the chondrocyte nucleus. Journal of Biomechanics, 28, 1529–1541.
  • Guilak, F., & Mow, V. C. (2000). The mechanical environment of the chondrocyte: A biphasic finite element model of cell-matrix interactions in articular cartilage. Journal of Biomechanics, 33, 1663–1673.
  • Guo, Q., Duffy, S. P., Matthews, K., Deng, X., Santoso, A. T., Islamzada, E., & Ma, H. (2016). Deformability based sorting of red blood cells improves diagnostic sensitivity for malaria caused by plasmodium falciparum. Lab on a Chip, 16, 645–654.
  • Huang, W.-X., Chang, C. B., & Sung, H. J. (2012). Three-dimensional simulation of elastic capsules in shear flow by the penalty immersed boundary method. Journal of Computational Physics, 231, 3340–3364.
  • Ingber, D. E. (1990). Fibronectin controls capillary endothelial cell growth by modulating cell shape. Proceedings of the National Academy of Sciences, 87, 3579–3583.
  • Kan, H.-C., Shyy, W., Udaykumar, H. S., Vigneron, P., & Tran-Son-Tay, R. (1999). Effects of nucleus on leukocyte recovery. Annals of Biomedical Engineering, 27, 648–655.
  • Kessler, S., Finken, R., & Seifert, U. (2008). Swinging and tumbling of elastic capsules in shear flow. Journal of Fluid Mechanics, 605, 207–226.
  • Kilimnik, A., Mao, W., & Alexeev, A. (2011). Inertial migration of deformable capsules in channel flow. Physics of Fluids (1994-present), 23, 123302.
  • Kim, B., Chang, C. B., Park, S. G., & Sung, H. J. (2015). Inertial migration of a 3d elastic capsule in a plane poiseuille flow. International Journal of Heat and Fluid Flow, 54, 87–96.
  • Krüger, T., Kaoui, B., & Harting, J. (2014). Interplay of inertia and deformability on rheological properties of a suspension of capsules. Journal of Fluid Mechanics, 751, 725–745.
  • Lac, E. & Barthès-Biesel, D. (2005). Deformation of a capsule in simple shear flow: Effect of membrane prestress. Physics of Fluids (1994-present), 17, 072105.
  • Lashgari, I., Picano, F., Breugem, W.-P., & Brandt, L. (2014). Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions. Physical Review Letters, 113, 254502.
  • Lashgari, I., Picano, F., Breugem, W. P., & Brandt, L. (2016). Channel flow of rigid sphere suspensions: Particle dynamics in the inertial regime. International Journal of Multiphase Flow, 78, 12–24.
  • Li, N., & Laizet, S. (2010). 2decomp & fft-a highly scalable 2d decomposition library and fft interface. Cray User Group 2010 Conference, Edinburgh, 1–13.
  • Lim, C. T., Zhou, E. H., & Quek, S. T. (2006). Mechanical models for living cells -- A review. Journal of Biomechanics, 39, 195–216.
  • Li, X., & Sarkar, K. (2008). Front tracking simulation of deformation and buckling instability of a liquid capsule enclosed by an elastic membrane. Journal of Computational Physics, 227, 4998–5018.
  • Maniotis, A. J., Chen, C. S., & Ingber, D. E. (1997). Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proceedings of the National Academy of Sciences, 94, 849–854.
  • Peskin, C. S. (2002). The immersed boundary method. Acta Numerica, 11, 479–517.
  • Pozrikidis, C. (1995). Finite deformation of liquid capsules enclosed by elastic membranes in simple shear flow. Journal of Fluid Mechanics, 297, 123–152.
  • Pozrikidis, C. (2001). Effect of membrane bending stiffness on the deformation of capsules in simple shear flow. Journal of Fluid Mechanics, 440, 269–291.
  • Pozrikidis, C. (2010). Computational hydrodynamics of capsules and biological cells (p. 89). London: CRC Press.
  • Pranay, P., Anekal, S. G., Hernandez-Ortiz, J. P., & Graham, M. D. (2010). Pair collisions of fluid-filled elastic capsules in shear flow: Effects of membrane properties and polymer additives. Physics of Fluids (1994-present), 22, 123103.
  • Ramanujan, S., & Pozrikidis, C. (1998). Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: Large deformations and the effect of fluid viscosities. Journal of Fluid Mechanics, 361, 117–143.
  • Rodriguez, M. L., McGarry, P. J., & Sniadecki, N. J. (2013). Review on cell mechanics: Experimental and modeling approaches. Applied Mechanics Reviews, 65, 060801.
  • Roma, A. M., Peskin, C. S., & Berger, M. J. (1999). An adaptive version of the immersed boundary method. Journal of Computational Physics, 153, 509–534.
  • Rorai, C., Touchard, A., Zhu, L., & Brandt, L. (2015). Motion of an elastic capsule in a constricted microchannel. The European Physical Journal E, 38, 1–13.
  • Schmid-Schönbein, H., & Wells, R. (1969). Fluid drop-like transition of erythrocytes under shear. Science, 165, 288–291.
  • Seol, Y., Hu, W.-F., Kim, Y., & Lai, M.-C. (2016). An immersed boundary method for simulating vesicle dynamics in three dimensions. Journal of Computational Physics, 322, 125–141.
  • Skalak, R., & Branemark, P. I. (1969). Deformation of red blood cells in capillaries. Science, 164, 717–719.
  • Skotheim, J. M., & Secomb, T. W. (2007). Red blood cells and other nonspherical capsules in shear flow: Oscillatory dynamics and the tank-treading-to-tumbling transition. Physical Review Letters, 98, 078301.
  • Swarztrauber, P. N., & Spotz, W. F. (2000). Generalized discrete spherical harmonic transforms. Journal of Computational Physics, 159, 213–230.
  • Uhlmann, M. (2005). An immersed boundary method with direct forcing for the simulation of particulate flows. Journal of Computational Physics, 209, 448–476.
  • Unverdi, S. O., & Tryggvason, G. (1992). A front-tracking method for viscous, incompressible, multi-fluid flows. Journal of Computational Physics, 100, 25–37.
  • Walter, A., Rehage, H., & Leonhard, H. (2001). Shear induced deformation of microcapsules: Shape oscillations and membrane folding. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 183, 123–132.
  • Walter, J., Salsac, A.-V., Barthès-Biesel, D., & Tallec, P. L. (2010). Coupling of finite element and boundary integral methods for a capsule in a stokes flow. International Journal for Numerical Methods in Engineering, 83, 829–850.
  • Wu, T., & Feng, J. J. (2013). Simulation of malaria-infected red blood cells in microfluidic channels: Passage and blockage. Biomicrofluidics, 7, 044115.
  • Zhang, Y., Huang, C., Kim, S., Golkaram, M., Dixon, M. W. A., Tilley, L., \ldots Suresh, S. (2015). Multiple stiffening effects of nanoscale knobs on human red blood cells infected with plasmodium falciparum malaria parasite. Proceedings of the National Academy of Sciences, 112, 6068–6073.
  • Zhao, H., Isfahani, A. H. G., Olson, L. N., & Freund, J. B. (2010). A spectral boundary integral method for flowing blood cells. Journal of Computational Physics, 229, 3726–3744.
  • Zhu, L., & Brandt, L. (2015). The motion of a deforming capsule through a corner. Journal of Fluid Mechanics, 770, 374–397.
  • Zhu, L., Rabault, J., & Brandt, L. (2015). The dynamics of a capsule in a wall-bounded oscillating shear flow. Physics of Fluids (1994-present), 27, 374–397.
  • Zhu, L., Rorai, C., Mitra, D., & Brandt, L. (2014). A microfluidic device to sort capsules by deformability: A numerical study. Soft Matter, 10, 7705–7711.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.