61
Views
0
CrossRef citations to date
0
Altmetric
Articles

The effect of undulations on the particle stress in dilute suspensions of rod-like particles

& ORCID Icon
Pages 61-77 | Received 05 Oct 2016, Accepted 05 Jan 2017, Published online: 04 May 2017

References

  • Aidun, C. K., & Clausen, J. R. (2010). Lattice-boltzmann method for complex flows. Annual Review of Fluid Mechanics, 42, 439–472.
  • Asgharzadeh, H., & Borazjani, I. (2016). A newton--krylov method with an approximate analytical jacobian for implicit solution of navier--stokes equations on staggered overset-curvilinear grids with immersed boundaries. Journal of Computational Physics. 331, 227–256. doi: 10.1016/j.jcp.2016.11.033
  • Asgharzadeh, H., & Borazjani, I. (2016). Effects of reynolds and womersley numbers on the hemodynamics of intracranial aneurysms. Computational and Mathematical Methods in Medicine, 2016, 7412926. doi: 10.1155/2016/7412926
  • Balasubramanian, S., Kagan, D., Jack Hu, C.-M., Campuzano, S., Lobo-Casta non, M. J., Lim, N., ... Wang, J. (2011). Micromachine-enabled capture and isolation of cancer cells in complex media. Angewandte Chemie International Edition, 50, 4161–4164.
  • Balay, S., Buschelman, K., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C., & Zhang, H. (2001). PETSc Web page. http://www.mcs.anl.gov/petsc.
  • Baraff, D. (2001). An introduction to physically based modeling: Rigid body simulation I -- Unconstrained rigid body dynamics. SIGGRAPH Course Notes, 2, G1–68. Retrieved from http://graphics.cs.cmu.edu/courses/15-869-F08/lec/14/notesg.pdf
  • Batchelor, G. K. (1970). The stress system in a suspension of force-free particles. Journal of Fluid Mechanics, 41, 545–570.
  • Becker, A. D., Masoud, H., Newbolt, J. W., Shelley, M., & Ristroph, L. (2015). Hydrodynamic schooling of flapping swimmers. Nature Communications, 6.
  • Borazjani, I., Ge, L., & Sotiropoulos, F. (2008). Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3d rigid bodies. Journal of Computational Physics, 227, 7587–7620.
  • Brennen, C., & Winet, H. (1977). Fluid mechanics of propulsion by cilia and flagella. Annual Review of Fluid Mechanics, 9, 339–398.
  • Daghooghi, M., & Borazjani, I. (2014, August 17--20). Parallel implementation of periodic boundary conditions for a curvilinear immersed boundary method. In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 1A: 34th Computers and Information in Engineering Conference. (pp. V01AT02A019–V01AT02A019), New York, USA. American Society of Mechanical Engineers.
  • Daghooghi, M., & Borazjani, I. (2015). The influence of inertia on the rheology of a periodic suspension of neutrally buoyant rigid ellipsoids. Journal of Fluid Mechanics, 781, 506–549.
  • Daghooghi, M., & Borazjani, I. (2015). The hydrodynamic advantages of synchronized swimming in a rectangular pattern. Bioinspiration & Biomimetics, 10, 056018.
  • Daghooghi, M., & Borazjani, I. (2016). Self-propelled swimming simulations of bio-inspired smart structures. Bioinspiration & Biomimetics, 11, 056001.
  • Elgeti, J., Winkler, R. G., & Gompper, G. (2015). Physics of microswimmers -- Single particle motion and collective behavior: A review. Reports on Progress in Physics, 78, 056601.
  • Gazzola, M., Tchieu, A. A., Alexeev, D., de Brauer, A., & Koumoutsakos, P. (2016). Learning to school in the presence of hydrodynamic interactions. Journal of Fluid Mechanics, 789, 726–749.
  • Ge, L., & Sotiropoulos, F. (2007). A numerical method for solving the 3d unsteady incompressible navier-stokes equations in curvilinear domains with complex immersed boundaries. Journal of Computational Physics, 225, 1782–1809.
  • Gilmanov, A., & Sotiropoulos, F. (2005). A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies. Journal of Computational Physics, 207, 457–492.
  • Gyrya, V., Lipnikov, K., Aranson, I. S., & Berlyand, L. (2011). Effective shear viscosity and dynamics of suspensions of micro-swimmers from small to moderate concentrations. Journal of Mathematical Biology, 62, 707–740.
  • Haddadi, H., & Morris, J. (2014). Microstructure and rheology of finite inertia neutrally buoyant suspensions. Journal of Fluid Mechanics, 749, 431–459. doi:10.1017/jfm.2014.238
  • Haines, B. M., Sokolov, A., Aranson, I. S., Berlyand, L., & Karpeev, D. A. (2009). Three-dimensional model for the effective viscosity of bacterial suspensions. Physical Review E, 80, 041922.
  • Hatwalne, Y., Ramaswamy, S., Rao, M., & Simha, R. A. (2004). Rheology of active-particle suspensions. Physical Review Letters, 92, 118101.
  • Jeffery, G. B. (1922). The motion of ellipsoidal particles immersed in a viscous fluid. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 102, 161–179.
  • Jeffrey, D. J., & Acrivos, A. (1976). The rheological properties of suspensions of rigid particles. AIChE Journal, 22, 417–432.
  • Lauga, E., & Powers, T. R. (2009). The hydrodynamics of swimming microorganisms. Reports on Progress in Physics, 72, 096601.
  • Leal, L. G., & Hinch, E. J. (1971). The effect of weak brownian rotations on particles in shear flow. Journal of Fluid Mechanics, 46, 685–703.
  • Li, G., Müller, U. K., van Leeuwen, J. L., & Liu, H. (2012). Body dynamics and hydrodynamics of swimming fish larvae: A computational study. Journal of Experimental Biology, 215, 4015–4033.
  • Mueller, S., Llewellin, E. W., & Mader, H. M. (2010). The rheology of suspensions of solid particles. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 466, 1201–1228.
  • Ozin, G. A., Manners, I., Fournier-Bidoz, S., & Arsenault, A. (2005). Dream nanomachines. Advanced Materials, 17, 3011–3018.
  • Rosén, T., Do-Quang, M., Aidun, C. K., & Lundell, F. (2015). The dynamical states of a prolate spheroidal particle suspended in shear flow as a consequence of particle and fluid inertia. Journal of Fluid Mechanics, 771, 115–158.
  • Saintillan, D., & Shelley, M. J. (2007). Orientational order and instabilities in suspensions of self-locomoting rods. Physical Review Letters, 99, 058102.
  • Saintillan, D., & Shelley, M. J. (2015). Theory of active suspensions. In S. E. Spagnolie (Ed.), Complex fluids in biological systems (pp. 319–355). New York, NY: Springer.
  • Sokolov, A., & Aranson, I. S. (2009). Reduction of viscosity in suspension of swimming bacteria. Physical Review Letters, 103, 148101.
  • Sokolov, A., Aranson, I. S., Kessler, J. O., & Goldstein, R. E. (2007). Concentration dependence of the collective dynamics of swimming bacteria. Physical Review Letters, 98, 158102.
  • Tao, Y.-G., den Otter, W. K., & Briels, W. J. (2005). Kayaking and wagging of rods in shear flow. Physical Review Letters, 95, 237802.
  • Toner, J., Tu, Y., & Ramaswamy, S. (2005). Hydrodynamics and phases of flocks. Annals of Physics, 318, 170–244.
  • Wensink, H. H., & Löwen, H., (2012). Emergent states in dense systems of active rods: From swarming to turbulence. Journal of Physics: Condensed Matter, 24, 464130.
  • Willert, C. E., & Gharib, M. (1991). Digital particle image velocimetry. Experiments in Fluids, 10, 181–193.
  • Yang, Y., Marceau, V., & Gompper, G. (2010). Swarm behavior of self-propelled rods and swimming flagella. Physical Review E, 82, 031904.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.