3,935
Views
5
CrossRef citations to date
0
Altmetric
Production physiology and biology

The comparison of blood characteristics in low- and high-altitude chickens

, , , , , , & show all
Pages 195-201 | Received 27 Sep 2016, Accepted 04 Jul 2017, Published online: 24 Jul 2017

References

  • Beall CM. 2006. Andean, Tibetan, and Ethiopian patterns of adaptation to high-altitude hypoxia. Integr Comp Biol. 46:18–24.
  • Beall CM. 2007. Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proc Natl Acad Sci. 104:8655–8660.
  • Bishop CM, Spivey RJ, Hawkes LA, Batbayar N, Chua B, Frappell PB, Milsom WK, Natsagdorj T, Newman SH, Scott GR, et al. 2015. The roller coaster flight strategy of bar-headed geese conserves energy during Himalayan migrations. Science. 347:250–254.
  • Black CP, Tenney S. 1980. Oxygen transport during progressive hypoxia in high-altitude and sea-level waterfowl. Respir Physiol. 39:217–239.
  • Bunn HF, Poyton RO. 1996. Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev. 76:839–885.
  • Carey C, Martin K. 1997. Physiological ecology of incubation of ptarmigan eggs at high and low altitudes. Wildlife Bio. 3:210–218.
  • Chappell MA, Snyder L. 1984. Biochemical and physiological correlates of deer mouse alpha-chain hemoglobin polymorphisms. Proc Natl Acad Sci USA. 81:5484–5488.
  • Ge M. 1998. Hematocrit of young adults and relation of altitude. Acta Acad Med Bengbu. 24:287–288.
  • Gou X, Li N, Lian L, Yan D, Zhang H, Wu C. 2005. Hypoxia adaptation and hemoglobin mutation in Tibetan chick embryo. Sci China C Life Sci. 48:616–623.
  • Gou X, Wang Z, Li N, Qiu F, Xu Z, Yan D, Yang S, Jia J, Kong X, Wei Z, et al. 2014. Whole-genome sequencing of six dog breeds from continuous altitudes reveals adaptation to high-altitude hypoxia. Genome Res. 24:1308–1315.
  • Hao Z, Changxin W, Yangzom C, Yao L, Zhang L. 2006. Adaptability to high altitude and NOS activity of lung in Tibetan chicken. J China Agric Univ. 11:35.
  • Hendrickson SL. 2013. A genome wide study of genetic adaptation to high altitude in feral Andean Horses of the páramo. BMC Evol Biol. 13:273.
  • Hiebl I, Braunitzer G, Schneeganss D. 1987. The primary structures of the major and minor hemoglobin-components of adult Andean goose (Chloephaga melanoptera, Anatidae): the mutation Leu-Ser in position 55 of the beta-chains. Biol Chem Hoppe Seyler. 368:1559–1569.
  • Huerta-Sánchez E, Jin X, Bianba Z, Peter BM, Vinckenbosch N, Liang Y, Yi X, He M, Somel M, Ni P. 2014. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature. 512:194–197.
  • Ji LD, Qiu YQ, Xu J, Irwin DM, Tam SC, Tang NL, Zhang YP. 2012. Genetic adaptation of the hypoxia-inducible factor pathway to oxygen pressure among Eurasian human populations. Mol Boil Evol. 29:3359–3370.
  • Li M, Tian S, Jin L, Zhou G, Li Y, Zhang Y, Wang T, Yeung CK, Chen L, Ma J, et al. 2013. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nat Genet. 45:1431–1438.
  • Liu C, Zhang LF, Li N. 2013. The specific expression pattern of globin mRNAs in Tibetan chicken during late embryonic stage under hypoxia. Comp Biochem Phys A. 164:638–644.
  • Lorenzo FR, Huff C, Myllymäki M, Olenchock B, Swierczek S, Tashi T, Gordeuk V, Wuren T, Ri-Li G, McClain DA. 2014. A genetic mechanism for Tibetan high-altitude adaptation. Nat Genet. 46:951–956.
  • Monge C, Leon-Velarde F. 1991. Physiological adaptation to high altitude: oxygen transport in mammals and birds. Physiol Rev. 71:1135–1172.
  • Petschow D, Wurdinger I, Baumann R, Duhm J, Braunitzer G, Bauer C. 1977. Causes of high blood O2 affinity of animals living at high altitude. J Appl Physiol Respir Environ Exerc Physiol. 42:139–143.
  • Scott GR. 2011. Elevated performance: the unique physiology of birds that fly at high altitudes. J Exp Biol. 214:2455–2462.
  • Scott GR, Hawkes LA, Frappell PB, Butler PJ, Bishop CM, Milsom WK. 2015. How bar-headed geese fly over the Himalayas. Physiology (Bethesda). 30:107–115.
  • Scott GR, Milsom WK. 2007. Control of breathing and adaptation to high altitude in the bar-headed goose. Am J Physiol Regul Integr Comp Physiol. 293:R379–R391.
  • Scott GR, Schulte PM, Egginton S, Scott ALM, Richards JG, Milsom WK. 2011. Molecular evolution of cytochrome c oxidase underlies high-altitude adaptation in the bar-headed goose. Mol Biol Evol. 28:351–363.
  • Semenza GL. 2000. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol. 88:1474–1480.
  • Shams H, Scheid P. 1993. Effects of hypobaria on parabronchial gas exchange in normoxic and hypoxic ducks. Respir Physiol. 91:155–163.
  • Storz JF, Moriyama H. 2008. Mechanisms of hemoglobin adaptation to high altitude hypoxia. High Alt Med Biol. 9:148–157.
  • Sun J, Zhong H, Chen SY, Yao YG, Liu YP. 2013. Association between MT-CO3 haplotypes and high-altitude adaptation in Tibetan chicken. Gene. 529:131–137.
  • Swan LW. 1961. The ecology of the high Himalayas. Sci Am. 205:68–78.
  • Swan LW. 1970. Goose of the Himalayas. Nat Hist. 79:68–75.
  • Tucker VA. 1968. Respiratory physiology of house sparrows in relation to high-altitude flight. J Exp Biol. 48:55–66.
  • Villamor E, Kessels CG, Ruijtenbeek K, Van Suylen, RJ, Belik J, De Mey JG, Blanco CE. 2004. Chronic in ovo hypoxia decreases pulmonary arterial contractile reactivity and induces biventricular cardiac enlargement in the chicken embryo. Am J Physiol-Reg I. 287:R642–R651.
  • Wideman R, Erf G, Chapman M, Wang W, Anthony N, Xiaofang L. 2002. Intravenous micro-particle injections and pulmonary hypertension in broiler chickens: acute post-injection mortality and ascites susceptibility. Poult Sci. 81:1203–1217.
  • Wu T, Wang X, Wei C, Cheng H, Wang X, Li Y, Zhao H, Young P, Li G, Wang Z. 2005. Hemoglobin levels in Qinghai-Tibet: different effects of gender for Tibetans vs. Han. J Appl Physiol. 98:598–604.
  • Yersin A, Huff W, Kubena L, Elissalde M, Harvey R, Witzel D, Giroir L. 1992. Changes in hematological, blood gas, and serum biochemical variables in broilers during exposure to simulated high altitude. Avian Dis. 36:189–196.
  • Zhang H, Wu C, Chamba Y, Ling Y. 2007. Blood characteristics for high altitude adaptation in Tibetan chickens. Poult Sci. 86:1384–1389.
  • Zhang H, Wu C, Qiangba Y, Ma X, Tang X, Pu B. 2004. Curve analysis of embryonic mortality in chickens incubation at high altitude. J China Agric Univ. 10:109–114.