2,533
Views
11
CrossRef citations to date
0
Altmetric
Papers

Heritability estimates of enteric methane emissions predicted from fatty acid profiles, and their relationships with milk composition, cheese-yield and body size and condition

& ORCID Icon
Pages 114-126 | Received 16 Jul 2019, Accepted 25 Nov 2019, Published online: 26 Dec 2019

References

  • Battaglini L, Bovolenta S, Gusmeroli F, Salvador S, Sturaro E. 2014. Environmental sustainability of Alpine livestock farms. Ital J Anim Sci. 13:2.
  • Bittante G, Cecchinato A, Schiavon S. 2018. Dairy system, parity, and lactation stage affect enteric methane production, yield, and intensity per kilogram of milk and cheese predicted from gas chromatography fatty acids. J Dairy Sci. 101(2):1752–1766.
  • Bittante G, Cipolat-Gotet C. 2018. Direct and indirect predictions of enteric methane daily production, yield, and intensity per unit of milk and cheese, from fatty acids and milk Fourier-transform infrared spectra. J Dairy Sci. 101(8):7219–7235.
  • Bittante G, Cipolat-Gotet C, Cecchinato A. 2013. Genetic parameters of different measures of cheese yield and milk nutrient recovery from an individual model cheese-manufacturing process. J Dairy Sci. 96(12):7966–7979.
  • Bittante G, Cipolat-Gotet C, Malchiodi F, Sturaro E, Tagliapietra F, Schiavon S, Cecchinato A. 2015. Effect of dairy farming system, herd, season, parity, and days in milk on modeling of the coagulation, curd firming, and syneresis of bovine milk. J Dairy Sci. 98(4):2759–2774.
  • Bovenhuis H, van Engelen S, Visker M. 2018. Letter to the Editor: a response to Huhtanen and Hristov (2018). J Dairy Sci. 101(11):9621–9622.
  • Brito LF, Schenkel FS, Oliveira HR, Cánovas A, Miglior F. 2018. Meta-analysis of heritability estimates for methane emission indicator traits in cattle and sheep. Proceedings of the World Congress on Genetics Applied to Livestock Production, Volume Challenges – Environmental. p. 740.
  • Cecchinato A, Macciotta NPP, Mele M, Tagliapietra F, Schiavon S, Bittante G, Pegolo S. 2019. Genetic and genomic analyses of latent variables related to the milk fatty acid profile, milk composition, and udder health in dairy cattle. J Dairy Sci. 102(6):5254–5265.
  • Chilliard Y, Ferlay A, Mansbridge RM, Doreau M. 2000. Ruminant milk fat plasticity: nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids. Ann Zootech. 49(3):181–205.
  • de Haas Y, Pszczola M, Soyeurt H, Wall E, Lassen J. 2017. Invited review: phenotypes to genetically reduce greenhouse gas emissions in dairying. J Dairy Sci. 100(2):855–870.
  • de Haas Y, Windig JJ, Calus MPL, Dijkstra J, de Haan M, Bannink A, Veerkamp RF. 2011. Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection. J Dairy Sci. 94(12):6122–6134.
  • Dijkstra J, van Zijderveld SM, Apajalahti JA, Bannink A, Gerrits WJJ, Newbold JR, Perdok HB, Berends H. 2011. Relationships between methane production and milk fatty acid profiles in dairy cattle. Anim. Feed Sci. Technol. 166–167:590–595.
  • Flay HE, Kuhn-Sherlock B, Macdonald KA, Camara M, Lopez-Villalobos N, Donaghy DJ, Roche JR. 2019. Hot topic: selecting cattle for low residual feed intake did not affect daily methane production but increased methane yield. J Dairy Sci. 102. 102:2708–2713.
  • Hammond KJ, Jones AK, Humphries DJ, Crompton LA, Reynolds CK. 2016. Effects of diet forage source and neutral detergent fiber content on milk production of dairy cattle and methane emissions determined using GreenFeed and respiration chamber techniques. J Dairy Sci. 99(10):7904–7917.
  • Hansen Axelsson H, Thomasen JR, Sørensen AC, Rydhmer L, Kargo M, Johansson K, Fikse WF. 2015. Breakeven prices for recording of indicator traits to reduce the environmental impact of milk production. J Anim Breed Genet. 132(1):30–41.
  • Hayes BJ, Donoghue KA, Reich CM, Mason BA, Bird-Gardiner T, Herd RM, Arthur PF. 2016. Genomic heritabilities and genomic estimated breeding values for methane traits in Angus cattle. J Anim Sci. 94(3):902–908.
  • Hristov AN, Kebreab E, Niu M, Oh J, Bannink A, Bayat AR, Boland TB, Brito AF, Casper DP, Crompton LA, et al. 2018. Symposium review: uncertainties in enteric methane inventories, measurement techniques, and prediction models. J Dairy Sci. 101(7):6655–6674.
  • Hristov AN, Oh J, Giallongo F, Frederick T, Harper MH, Weeks H, Branco AF, Price WJ, Moate PJ, Deighton MH, et al. 2016. Short communication: comparison of the GreenFeed system with the sulfur hexafluoride tracer technique for measuring enteric methane emissions from dairy cows. J Dairy Sci. 99(7):5461–5465.
  • Huhtanen P, Hristov AN. 2018. Letter to the Editor: challenging one sensor method for screening dairy cows for reduced methane emissions. J Dairy Sci. 101(11):9619–9620.
  • Kandel PB, Vanrobays ML, Vanlierde A, Dehareng F, Froidmont E, Gengler N, Soyeurt H. 2017. Genetic parameters of mid-infrared methane predictions and their relationships with milk production traits in Holstein cattle. J Dairy Sci. 100(7):5578–5591.
  • Khiaosa-ard R, Zebeli Q. 2013. Meta-analysis of the effects of essential oils and their bioactive compounds on rumen fermentation characteristics and feed efficiency in ruminants. J Anim Sci. 91(4):1819–1830.
  • Knapp JR, Laur GL, Vadas PA, Weiss WP, Tricarico JM. 2014. Invited review: enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions. J Dairy Sci. 97(6):3231–3261.
  • Lassen J, Løvendahl P. 2016. Heritability estimates for enteric methane emissions from Holstein cattle measured using noninvasive methods. J Dairy Sci. 99(3):1959–1967.
  • Lassen J, Poulsen NA, Larsen MK, Buitenhuis AJ. 2016. Genetic and genomic relationship between methane production measured in breath and fatty acid content in milk samples from Danish Holsteins. Anim Prod Sci. 56(3):298–303.
  • Lovarelli D, Bava L, Zucali M, D’Imporzano G, Adani F, Tamburini A, Sandrucci A. 2019. Improvements to dairy farms for environmental sustainability in Grana Padano and Parmigiano Reggiano production systems. Ital J Anim Sci. 18(1):1035–1048.
  • Manzanilla-Pech CIV, De Haas Y, Hayes BJ, Veerkamp RF, Khansefid M, Donoghue KA, Arthur PF, Pryce JE. 2016. Genomewide association study of methane emissions in Angus beef cattle with validation in dairy cattle. J Anim Sci. 94(10):4151–4166.
  • Mele M, Macciotta NPP, Cecchinato A, Conte G, Schiavon S, Bittante G. 2016. Multivariate factor analysis of detailed milk fatty acid profile: effects of dairy system, feeding, herd, parity, and stage of lactation. J Dairy Sci. 99(12):9820–9833.
  • Negussie E, de Haas Y, Dehareng F, Dewhurst RJ, Dijkstra J, Gengler N, Morgavi DP, Soyeurt H, van Gastelen S, Yan T, et al. 2017. Invited review: large-scale indirect measurements for enteric methane emissions in dairy cattle: a review of proxies and their potential for use in management and breeding decisions. J Dairy Sci. 100(4):2433–2453.
  • NRC. 2001. Nutrient requirements of dairy cattle: seventh revised edition. Subcommittee on dairy cattle nutrition, Committee on animal nutrition. Washington (DC): National Research Council. National Academy Press.
  • Pegolo S, Cecchinato A, Casellas J, Conte G, Mele M, Schiavon S, Bittante G. 2016. Genetic and environmental relationships of detailed milk fatty acids profile determined by gas chromatography in Brown Swiss cows. J Dairy Sci. 99(2):1315–1330.
  • Pegolo S, Dadousis C, Mach N, Ramayo-Caldas Y, Mele M, Conte G, Schiavon S, Bittante G, Cecchinato A. 2017. SNP co-association and network analyses identify E2F3, KDM5A and BACH2 as key regulators of the bovine milk fatty acid profile. Sci Rep. 7:17317.
  • Pickering NK, Chagunda MGG, Banos G, Mrode R, McEwan JC, Wall E. 2015. Genetic parameters for predicted methane production and laser methane detector measurements. J Anim Sci. 92:11–20.
  • Pirlo G, Carè S. 2013. A simplified tool for estimating carbon footprint of dairy cattle milk. Ital J Anim Sci. 12:4.
  • Pryce JE, Bell MJ. 2017. The impact of genetic selection on greenhouse-gas emissions in Australian dairy cattle. Anim Prod Sci. 57(7):1451–1456.
  • Pulina G, Dias Francesconi A.E, Stefanon B, Sevi A, Calamari L, Lacetera N, Dell’Orto V, Pilla F, Ajmone Marsan P, Mele M, et al. 2017. Sustainable ruminant production to help feed the planet. Ital J Anim Sci. 16(1):140–171.
  • Shetty N, Difford G, Lassen J, Løvendahl O, Buitenhuis AJ. 2017. Predicting methane emissions of lactating Danish Holstein cows using Fourier transform mid-infrared spectroscopy of milk. J Dairy Sci. 100(11):9052–9060.
  • van Engelen S, Bovenhuis H, Dijkstra J, van Arendonk JAM, Visker M. 2015. Short communication: genetic study of methane production predicted from milk fat composition in dairy cows. J Dairy Sci. 98(11):8223–8226.
  • van Engelen S, Bovenhuis H, van der Tol PPJ, Visker M. 2018. Genetic background of methane emission by Dutch Holstein Friesian cows measured with infrared sensors in automatic milking systems. J Dairy Sci. 101(3):2226–2234.
  • van Gastelen S, Dijkstra J. 2016. Prediction of methane emission from lactating dairy cows using milk fatty acids and mid-infrared spectroscopy. J Sci Food Agric. 96(12):3963–3968.
  • van Gastelen S, Mollenhorst H, Antunes-Fernandes EC, Hettinga KA, van Burgsteden GG, Dijkstra J, Rademaker J. 2018. Predicting enteric methane emission of dairy cows with milk Fourier-transform infrared spectra and gas chromatography–based milk fatty acid profiles. J Dairy Sci. 101(6):5582–5598.
  • van Lingen HJ, Crompton LA, Hendriks WH, Reynolds CK, Dijkstra J. 2014. Meta-analysis of relationships between enteric methane yield and milk fatty acid profile in dairy cattle. J Dairy Sci. 97(11):7115–7132.
  • Vanrobays M.-L, Bastin C, Vandenplas J, Hammami H, Soyeurt H, Vanlierde A, Dehareng F, Froidmont E, Gengler N. 2016. Changes throughout lactation in phenotypic and genetic correlations between methane emissions and milk fatty acid contents predicted from milk mid-infrared spectra. J Dairy Sci. 99(9):7247–7260.
  • Weimer PJ, Stevenson DM, Mantovani HC, Man S. 2010. Host specificity of the ruminal bacterial community of the dairy cow following near total exchange of ruminal contents. J Dairy Sci. 93(12):5902–5912.
  • Wu L, Koerkamp P, Ogink N. 2018. Uncertainty assessment of the breath methane concentration method to determine methane production of dairy cows. J Dairy Sci. 101(2):1554–1564.
  • Xue B, Yan T, Ferris CF, Mayne CS. 2011. Milk production and energy efficiency of Holstein and Jersey-Holstein crossbred dairy cows offered diets containing grass silage. J Dairy Sci. 94(3):1455–1464.
  • Yin T, Pinent T, Brügemann K, Simianer H, König S. 2015. Simulation, prediction, and genetic analyses of daily methane emissions in dairy cattle. J Dairy Sci. 98(8):5748–5762.