2,346
Views
7
CrossRef citations to date
0
Altmetric
Papers

Fermentability characteristics of different Saccharomyces cerevisiae cell wall using cat faeces as inoculum

, , , , , & show all
Pages 186-193 | Received 17 Aug 2019, Accepted 28 Dec 2019, Published online: 24 Jan 2020

References

  • AOAC. 2005. Official methods of analysis. 18th ed. Arlington (VA): Association of Official Analytical Chemists.
  • Aquino AA, Saad F, Santos JPF, Leite CAL, Sampaio GR, Feliciano M. 2013. Efeitos da parede de levedura em dieta úmida na microbiota fecal, na produção de gás e na morfologia intestinal de gatos adultos [Effects of the yeast cell wall in a moist diet in fecal microbial, gas production and intestinal morphology of adult cats]. Arq Bras Med Vet Zootec. 65:1673–1680.
  • Bauer E, Williams BA, Voigt C, Mosenthin R, Verstegen M. 2001. Microbial activities of faeces from unweaned and adult pigs, in relation to selected fermentable carbohydrates. Anim Sci. 73:313–322.
  • Borchani C, Fonteyn F, Jamin G, Paquot M, Blecker C, Thonart P. 2014. Enzymatic process for the fractionation of baker’s yeast cell wall (Saccharomyces cerevisiae). Food Chem. 163:108–113.
  • Borchani C, Fonteyn F, Jamin G, Paquot M, Thonart P, Blecker C. 2016. Physical, functional and structural characterization of the cell wall fractions from baker’s yeast Saccharomyces cerevisiae. Food Chem. 194:1149–1155.
  • Bosch G, Heesen L, de Melo Santos K, Cone JW, Pellikaan WF, Hendriks WH. 2017a. Evaluation of an in vitro fibre fermentation method using feline faecal inocula: inter-individual variation. J Nutr Sci. 6:e24.
  • Bosch G, Heesen L, de Melo Santos K, Pellikaan WF, Cone JW, Hendriks WH. 2017b. Evaluation of an in vitro fibre fermentation method using feline faecal inocula: repeatability and reproducibility. J Nutr Sci. 6:e25.
  • Bosch G, Vervoort JJM, Hendriks WH. 2016. In vitro digestibility and fermentability of selected insects for dog foods. Anim Feed Sci Technol. 221:174–184.
  • Calabrò S, Carciofi AC, Musco N, Tudisco R, Gomes MOS, Cutrignelli MI. 2013. Fermentation characteristics of several carbohydrate sources for dog diets using the in vitro gas production technique. Italian Journal of Animal Science. 12:e4–27.
  • Chen J, Seviour R. 2007. Medicinal importance of fungal beta-(1->3), (1->6)-glucans. Mycol Res. 111:635–652.
  • Cutrignelli MI, Bovera F, Tudisco R, D’Urso S, Marono S, Piccolo G, Calabrò S. 2009. In vitro fermentation characteristics of different carbohydrate sources in two dog breeds (German shepherd and Neapolitan mastiff). J Anim Physiol Anim Nutr. 93:305–312.
  • Desnoyers M, Giger-Reverdin S, Bertin G, Duvaux-Ponter C, Sauvant D. 2009. Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants. J Dairy Sci. 92:1620–1631.
  • Fomenky BE, Chiquette J, Bissonnette N, Talbot G, Chouinard PY, Ibeagha-Awemu EM. 2017. Impact of Saccharomyces cerevisiae boulardii CNCMI-1079 and Lactobacillus acidophilus BT1386 on total lactobacilli population in the gastrointestinal tract and colon histomorphology of Holstein dairy calves. Anim Feed Sci Technol. 234:151–161.
  • Freimund S, Sauter M, Käppeli O, Dutler H. 2003. A new non-degrading isolation process for 1,3-b-D-glucan of high purity from baker’s yeast Saccharomyces cerevisiae. Carbohydr Polym. 54:159–171.
  • Freimund S, Janett S, Arrigoni E, Amadò R. 2005. Optimised quantification method for yeast-derived 1,3-β-D-glucan and α-D-mannan. Eur Food Res Technol. 220:101–105.
  • Garcia-Mazcorro JF, Barcenas-Walls JR, Suchodolski JS, Steiner JM. 2015. Molecular assessment of the fecal microbiota in healthy cats and dogs before and during supplementation with fructo-oligosaccharides (FOS) and inulin using high-throughput 454-pyrosequencing. Peer J. 3184:20–26.
  • Groot JCJ, Cone JW, Williams BA, Debersaques FMA, Lantinga EA. 1996. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim Feed Sci Technol. 64:77–89.
  • Hai NV, Fotedar R. 2009. Comparison of the effects of the prebiotics (Bio-Mos® and β-1,3-D-glucan) and the customised probiotics (Pseudomonas synxantha and P. aeruginosa) on the culture of juvenile western king prawns (Penaeus latisulcatus Kishinouye, 1896). Aquaculture. 289:310–316.
  • Jaehrig SC, Rohn S, Kroh LW, Wildenauer FX, Lisdat F, Fleischer LG, Kurz T. 2008. Antioxidative activity of (1-3), (1-6)-b-D-glucan from Saccharomyces cerevisiae grown on different media. Food Sci Technol. 41:868–877.
  • Johnson S, Maziade PJ, McFarland LV, Trick W, Donskey C, Currie B, Low DE, Goldstein EJ. 2012. Is primary prevention of Clostridium difficult infection possible with specific probiotics? Int J Infect Dis. 16:e786–792.
  • Kafilzadeh F, Payandeh S, Gómez-Cortés P, Ghadimi D, Schiavone A, Martínez Marín AL (2019) Effects of probiotic supplementation on milk production, blood metabolite profile and enzyme activities of ewes during lactation, Italian J Anim Sci. 18:134–139.
  • Kwiatkowski S, Kwiatkowski SE. 2012. Yeast (Saccharomyces cerevisiae) glucan polysaccharides – occurrence, separation and application in food, feed and health industries. In: Karunaratne DN, editor. The complex world of polysaccharides. Rijeka (Croatia): InTech; p. 2.
  • Laroche C, Michaud P. 2007. New developments and prospective applications for beta (1,3) glucans. Recent Pat Biotechnol. 1:59–73.
  • Lee JW, Patterson R, Woyengo TA. 2018. Porcine in vitro degradation and fermentation characteristics of canola co-products without or with fiber-degrading enzymes. Anim Feed Sci Technol. 241:133–140.
  • Lipke PN, Ovalle R. 1998. Cell wall architecture in yeast: new structure and new challenges. J Bacteriol. 180:3735–3740.
  • Liu HZ, Wang Q, He Y. 2011. Immunoactivities and antineoplastic activities of Saccharomyces cerevisiae mannoprotein. Carbohydr Polym. 83:1690–1695.
  • Liu X, Wang Q, Cui S, Liu H. 2008. A new isolation method of b-D-glucans from spent yeast Saccharomyces cerevisiae. Food Hydrocoll. 22:239–247.
  • Mackenthun E, Coenen M, Vervuert I. 2013. Effects of Saccharomyces cerevisiae supplementation on apparent total tract digestibility of nutrients and fermentation profile in healthy horses. J Anim Physiol Anim Nutr. 97:115–120.
  • Magnani M, Calliari CM, de Macedo FC, Mori MP, de Syllos Cólus IM, Castro-Gomez R. 2009. Optimized methodology for extraction of (1-3) (1-6)- β-D-glucan from Saccharomyces cerevisiae and in vitro evaluation of the cytotoxicity and genotoxicity of the corresponding carboxymethyl derivative. Carbohydr Polym. 78:658–665.
  • Mercurio M, Cappelletti P, de Gennaro B, de Gennaro M, Bovera F, Iannaccone F, Grifa C, Langella A, Monetti V, Esposito L. 2016. The effect of digestive activity of pig gastro-intestinal tract on zeoliterich rocks: an in vitro study. Microporous Mesoporous Mater. 225:133–136.
  • Mroz Z. 2005. Organic acids as potential alternatives to antibiotic growth promoters for pigs. In: Ball RO, Zijlstra RT, editors. Advance in pork production. Vol. 16. Edmonton (AB): University of Alberta Department of Agricultural, Food and Nutritional Science; p. 169–182.
  • Murray JMD, McMullin P, Handel I, Hastie PM. 2014. Comparison of intestinal contents from different regions of the equine gastrointestinal tract as inocula for use in an in vitro gas production technique. Anim Feed Sci Technol. 187:98–103.
  • Musco N, Calabrò S, Infascelli F, Tudisco R, Lombardi P, Grossi M, Addi L, Neto BP, Cutrignelli MI. 2015. In vitro fermentation of structural carbohydrate-rich feeds using faecal inoculum from pigs. Italian J Anim Sci. 14:3875–3562.
  • Musco N, Calabrò S, Roberti F, Grazioli R, Tudisco R, Lombardi P, Cutrignelli MI. 2018. In vitro evaluation of Saccharomyces cerevisiae cell wall fermentability using a dog model. J Anim Physiol Anim Nutr. 102:24–30.
  • Musco N, Cutrignelli MI, Calabrò S, Tudisco R, Infascelli F, Grazioli R, Lo Presti V, Gresta F, Chiofalo B. 2017. Comparison of nutritional and antinutritional traits among different species (Lupinus albus L., Lupinus luteus L., Lupinus angustifolius L.) and varieties of lupin seeds. J Anim Physiol Anim Nutr. 101:1227–1241.
  • Musco N, Lombardi P, Calabrò S, Mastellone V, Tudisco R, Grossi M, Addi L, Grazioli R, Cutrignelli MI. 2016. Aloe arborescens supplementation in cat diet: evaluation of effects by in vitro gas production technique. Italian J Anim Sci. 15:407–411.
  • National Research Council (NRC). 2006. Nutrient requirements of dogs and cats. Washington (DC): National Academy Press.
  • Newman KE, Newman MC. 2001. Evaluation of mannan oligosaccharides on the microflora and immunoglobulin status of sows and piglet performance. J Anim Sci. 79:189.
  • O’Quinn PR, Funderburke DW, Tibbetts GW. 2001. Effects of dietary supplementation with mannan oligosaccharides on sow and litter performance in a commercial production system. J Anim Sci. 79:212.
  • Pinto M, Coelho E, Nunes A, Brandão T, Coimbra MA. 2015. Valuation of brewers spent yeast polysaccharides: A structural characterization approach. Carbohydr Polym. 116:215–222.
  • Ringø E, Zhou Z, Vecino JLG, Wadsworth S, Romero J, Krogdahl Å, Olsen RE, Dimitroglou A, Foey A, Davies S, et al. 2016. Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story? Aquacult Nutr. 22:219–282.
  • Rodriguez A, Kildegaard KR, Li M, Borodina I, Nielsen J. 2015. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab Eng. 31:181–188.
  • Santos JPF, Aquino AA, Glória M, Avila-Campos MJ, Oba PM, Santos KM, Vendramini THA, Carciofi AC, Junior AR, Brunetto MA. 2018. Effects of dietary yeast cell wall on faecal bacteria and fermentation products in adult cats. J Anim Physiol Anim Nutr (Berl). 102:1091–1101.
  • Shurson GC. 2018. Yeast and yeast derivatives in feed additives and ingredients: sources, characteristics, animal responses, and quantification methods. Anim Feed Sci Technol. 235:60–76.
  • Vastolo A, Calabrò S, Liotta L, Musco N, Di Rosa AR, Cutrignelli MI, Chiofalo B. 2019. In vitro fermentation and chemical characteristics of Mediterranean by-products for swine nurition. Animals. 9:556.
  • White LA, Newman MC, Cromwell GL, Lindemann MD. 2002. Brewers dried yeast as a source of mannan oligosaccharides for weanling pigs. J Anim Sci. 80:2619–2620.
  • Younes H, Coudray C, Bellanger J, Demignè C, Rayssiguier Y, Rèmèsy C. 2001. Effects of two fermentable carbohydrates (inulin and resistant starch) and their combination on calcium and magnesium balance in rats. Br J Nutr. 86:479–485.