2,142
Views
9
CrossRef citations to date
0
Altmetric
Papers

Influence of microbial fermentation processing of sesame meal and enzyme supplementation on broiler performances

, ORCID Icon &
Pages 712-722 | Received 05 Dec 2019, Accepted 28 Jun 2020, Published online: 11 Jul 2020

References

  • Adeola O. 2010. Phosphorus equivalency value of an Escherichia coli phytase in the diets of White Pekin ducks. Poult Sci. 89:1199–1206.
  • Al Harthi M, El Deek A. 2009. Evaluation of sesame meal replacement in broiler diets with phytase and probiotic supplementation. Egypt Poult Sci J. 29:99–125.
  • AOAC. 2005. Official Methods of Analysis of the Association Official Analytical Chemists. 18th ed. Gaithersburg (MA): AOAC International.
  • Ashayerizadeh A, Dastar B, Shargh MS, Mahoonak AS, Zerehdaran S. 2017. Fermented rapeseed meal is effective in controlling Salmonella enterica serovar Typhimurium infection and improving growth performance in broiler chicks. Vet Microbiol. 201:93–102.
  • Bernfeld P. 1955. Amylase α and β. Methods Enzymol. 1:149–155.
  • Canibe N, Miettinen H, Jensen B. 2008. Effect of adding Lactobacillus plantarum or a formic acid containing-product to fermented liquid feed on gastrointestinal ecology and growth performance of piglets. Livest Sci. 114:251–262.
  • Chamberlain CA, Hatch M, Garrett TJ. 2019. Metabolomic profiling of oxalate-degrading probiotic Lactobacillus acidophilus and Lactobacillus gasseri. PLoS One. 14:e0222393.
  • Chen C, Shih Y, Chiou P, Yu B. 2010. Evaluating nutritional quality of single stage-and two stage-fermented soybean meal. Asian Australas J Anim Sci. 23:598–606.
  • Chiang G, Lu W, Piao X, Hu J, Gong L, Thacker P. 2009. Effects of feeding solid-state fermented rapeseed meal on performance, nutrient digestibility, intestinal ecology and intestinal morphology of broiler chickens. Asian Australas J Anim Sci. 23:263–271.
  • Cowieson A, Ruckebusch JP, Sorbara J, Wilson J, Guggenbuhl P, Roos F. 2017. A systematic view on the effect of phytase on ileal amino acid digestibility in broilers. Anim Feed Sci Technol. 225:182–194.
  • Das P, Ghosh K. 2015. Improvement of nutritive value of sesame oil cake in formulated diets for rohu, Labeo rohita (Hamilton) after bio-processing through solid state fermentation by a phytase-producing fish gut bacterium. Int J Aquat Biol. 3:89–101.
  • David O, John O. 2015. Response of broiler chickens fed diets containing differently processed Sesame (Sesame indicum L.) seed meal. ARJASR. 3:13–20.
  • De Coca-Sinova A, Mateos GG, González-Alvarado J, Centeno C, Lázaro R, Jiménez-Moreno E. 2011. Comparative study of two analytical procedures for the determination of acid insoluble ash for evaluation of nutrient retention in broilers. Span J Agric Res. 9:761–768.
  • de Souza TR, Escobar K, Aguilera G, Ramírez B, Mariscal-Landín R. 2017. Sesame meal as the first protein source in piglet starter diets and advantages of a phytase: a digestive study. SA J an Sci. 47:606–615.
  • Elyas SH, El Tinay AH, Yousif NE, Elsheikh EA. 2002. Effect of natural fermentation on nutritive value and in vitro protein digestibility of pearl millet. Food Chem. 78:75–79.
  • Farran M, Uwayjan M, Miski A, Akhdar N, Ashkarian V. 2000. Performance of broilers and layers fed graded levels of sesame hull. J Appl Poult Res. 9:453–459.
  • Fierabracci V, Masiello P, Novelli M, Bergamini E. 1991. Application of amino acid analysis by high-performance liquid chromatography with phenyl isothiocyanate derivatization to the rapid determination of free amino acids in biological samples. J Chromatogr B, Biomed Sci Appl. 570:285–291.
  • Foster J, Nakata PA. 2014. An oxalyl-CoA synthetase is important for oxalate metabolism in Saccharomyces cerevisiae. FEBS Lett. 588:160–166.
  • García-Mantrana I, Yebra MJ, Haros M, Monedero V. 2016. Expression of bifidobacterial phytases in Lactobacillus casei and their application in a food model of whole-grain sourdough bread. Int J Food Microbiol. 216:18–24.
  • Ghazvinian K, Pour HA, Alanghi AR. 2016. Effect of sesame meal supplementation to the feed on performance, blood parameters and physiology characteristics in Japanese quail. Entomol Appl Sci Lett. 3:71–75.
  • Gordon RW, Roland DA. 1998. Influence of supplemental phytase on calcium and phosphorus utilization in laying hens. Poult Sci. 77:290–294.
  • Gupta RK, Gangoliya SS, Singh NK. 2015. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J Food Sci Technol. 52:676–684.
  • Hassaan MS, Soltan MA, Abdel-Moez AM. 2015. Nutritive value of soybean meal after solid state fermentation with Saccharomyces cerevisiae for Nile tilapia, Oreochromis niloticus. Anim Feed Sci Technol. 201:89–98.
  • Hatch M. 2017. Gut microbiota and oxalate homeostasis. Ann Transl Med. 5:36–36.
  • Jendza J, Dilger R, Sands J, Adeola O. 2006. Efficacy and equivalency of an Escherichia coli-derived phytase for replacing inorganic phosphorus in the diets of broiler chickens and young pigs. J Anim Sci. 84:3364–3374.
  • Jin L, Ho Y, Abdullah N, Jalaludin S. 2000. Digestive and bacterial enzyme activities in broilers fed diets supplemented with Lactobacillus cultures. Poult Sci. 79:886–891.
  • Kaneko K, Yamasaki K, Tagawa Y, Tokunaga M, Tobisa M, Furuse M. 2002. Effects of dietary sesame meal on growth, meat ingredient and lipid accumulation in broilers. J Poult Sci (Japan), 39:56–62.
  • Kłosowski G, Mikulski D, Jankowiak O. 2018. Extracellular phytase production by the wine yeast S. cerevisiae (Finarome Strain) during submerged fermentation. Molecules. 23:848.
  • Kong C, Adeola O. 2011. Protein utilization and amino acid digestibility of canola meal in response to phytase in broiler chickens. Poult Sci. 90:1508–1515.
  • Lease JG, Williams WP. 1967. Availability of Zinc and comparison of in vitro and in vivo zinc uptake of certain oil seed meals. Poult Sci. 46:233–242.
  • Lei X, Stahl C. 2001. Biotechnological development of effective phytases for mineral nutrition and environmental protection. Appl Microbiol Biotechnol. 57:474–481.
  • Lynn K, Clevette-Radford N. 1984. Purification and characterization of hevain, a serine protease from Hevea brasiliensis. Phytochemistry. 23:963–964.
  • Makinde F, Akinoso R. 2013. Nutrient composition and effect of processing treatments on anti nutritional factors of Nigerian sesame (Sesamum indicum Linn) cultivars. Int Food Res J. 20:2293.
  • Makinde F, Akinoso R, Adepoju A. 2013. Effect of fermentation containers on the chemical composition of fermented sesame (Sesamum indicum L) seeds. AJFAND. 13:7122–7137.
  • Mamputu M, Buhr R. 1995. Effect of substituting sesame meal for soybean meal on layer and broiler performance. Poult Sci. 74:672–684.
  • Mukhopadhyay N, Ray A. 1999a. Effect of fermentation on the nutritive value of sesame seed meal in the diets for rohu, Labeo rohita (Hamilton), fingerlings. Aquac Nutr. 5:229–236.
  • Mukhopadhyay N, Ray A. 1999b. Improvement of quality of sesame Seasamum indicum seed meal protein with supplemental amino acids in feeds for rohu Labeo rohita (Hamilton) fingerlings. Aquac Res. 30:549–557.
  • Nikolakakis I, Bonos E, Kasapidou E, Kargopoulos A, Mitlianga P. 2014. Effect of dietary sesame seed hulls on broiler performance, carcass traits and lipid oxidation of the meat. Eur Poult Sci. 78: 28.
  • Olagunju AI, Ifesan BO. 2013. Changes in nutrient and antinutritional contents of sesame seeds during fermentation. J Microbiol Biotechnol Food Sci. 2:2407.
  • Olude O, George F, Alegbeleye W. 2016. Utilization of autoclaved and fermented sesame (Sesamum indicum L.) seed meal in diets for Til-aqua natural male tilapia. Anim Nutr. 2:339–344.
  • Olukomaiya O, Adiamo OQ, Fernando WC, Mereddy R, Li X, Sultanbawa Y. 2020. Effect of solid-state fermentation on proximate composition, anti-nutritional factor, microbiological and functional properties of lupin flour. Food Chem. 315:126238.
  • Onipede G, Aremu B, Sanni A, Babalola O. 2020. Molecular study of the phytase gene in lactic acid bacteria isolated from Ogi and Kunun-Zaki. African Fermented Cereal Gruel and Beverage. Applied Food Biotechnology. 7:49–60.
  • Pan Y, Hy L, Gao Q. 1992. The optimum allowance of sesame cake meal for broilers. Chin J Anim Sci. 28:26–27.
  • Priyodip P, Prakash PY, Balaji S. 2017. Phytases of probiotic bacteria: characteristics and beneficial aspects. Indian J Microbiol. 57:148–154.
  • Rahimian Y, Valiollahi S, Tabatabaie S, Toghiani M, Kheiri F, Rafiee A, Khajeali Y. 2013. Effect of use cumulative levels of sesame (Sesamum indicum L.) meal with phytase enzyme on performance of broiler chickens. World Appl Sci J. 26:793–800.
  • Rama Rao S, Raju M, Panda A, Poonam N, Sunder GS, Sharma R. 2008. Utilisation of sesame (Sesamum indicum) seed meal in broiler chicken diets. Br Poult Sci. 49:81–85.
  • Ravindran V, Blair R. 1992. Feed resources for poultry production in Asia and the Pacific. II. Plant protein sources. Worlds Poult Sci J. 48:205–231.
  • Ravindran V, Cabahug S, Ravindran G, Selle P, Bryden W. 2000. Response of broiler chickens to microbial phytase supplementation as influenced by dietary phytic acid and non-phytate phosphorous levels. II. Effects on apparent metabolisable energy, nutrient digestibility and nutrient retention. Br Poult Sci. 41:193–200.
  • Ravindran V, Morel P, Partridge G, Hruby M, Sands J. 2006. Influence of an Escherichia coli-derived phytase on nutrient utilization in broiler starters fed diets containing varying concentrations of phytic acid. Poult Sci. 85:82–89.
  • Roy T, Banerjee G, Dan SK, Ghosh P, Ray AK. 2014. Improvement of nutritive value of sesame oilseed meal in formulated diets for rohu, Labeo rohita (Hamilton), fingerlings after fermentation with two phytase-producing bacterial strains isolated from fish gut. Aquacult Int. 22:633–652.
  • SAS I. 2009. Sas/Graph 9.2: Graph Template Language User’s Guide. SAS Institute.
  • Selle PH, Ravindran V. 2007. Microbial phytase in poultry nutrition. Anim Feed Sci Technol. 135:1–41.
  • Shanti H, Abo Omar J, Al-Shakhrit K, Ghany AA. 2012. Performance and some blood constituents of broilers fed sesame meal supplemented with microbial phytase. Asian Pac J Trop Biomed. 1:1–8.
  • Shirley R, Edwards H Jr. 2003. Graded levels of phytase past industry standards improves broiler performance. Poult Sci. 82:671–680.
  • Simons P, Versteegh HA, Jongbloed AW, Kemme P, Slump P, Bos K, Wolters M, Beudeker R, Verschoor G. 1990. Improvement of phosphorus availability by microbial phytase in broilers and pigs. Br J Nutr. 64:525–540.
  • Sina G, Jafari M, Khojasteh S. 2014. The use of sesame meal in diets of Japanese Quail. Iran J Appl Anim Sci. 4:877–881.
  • Skrede G, Herstad O, Sahlstrøm S, Holck A, Slinde E, Skrede A. 2003. Effects of lactic acid fermentation on wheat and barley carbohydrate composition and production performance in the chicken. Anim Feed Sci Technol. 105:135–148.
  • Taheri H, Moravej H, Tabandeh F, Zaghari M, Shivazad M. 2009. Screening of lactic acid bacteria toward their selection as a source of chicken probiotic. Poult Sci. 88:1586–1593.
  • Van Winsen RL, Urlings BA, Lipman LJ, Snijders JM, Keuzenkamp D, Verheijden JH, van Knapen F. 2001. Effect of fermented feed on the microbial population of the gastrointestinal tracts of pigs. Appl Environ Microbiol. 67:3071–3076.
  • West TP. 2014. Effect of phytase treatment on phosphate availability in the potential food supplement corn distillers’ grains with solubles. J Food Process. 2014:1–5.
  • Yamauchi K, Samanya M, Seki K, Ijiri N, Thongwittaya N. 2006. Influence of dietary sesame meal level on histological alterations of the intestinal mucosa and growth performance of chickens. J Appl Poult Res. 15:266–273.
  • Zhang WJ, Xu ZR, Zhao SH, Sun JY, Yang X. 2007. Development of a microbial fermentation process for detoxification of gossypol in cottonseed meal. Anim Feed Sci Technol. 135:118–176.