2,823
Views
7
CrossRef citations to date
0
Altmetric
Papers

Meta-analysis to evaluate the impact of the reduction of dietary crude protein on the gut health of post-weaning pigs

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 1386-1397 | Received 18 Feb 2021, Accepted 30 Jun 2021, Published online: 29 Sep 2021

References

  • Aguirre M, Eck A, Koenen ME, Savelkoul PHM, Budding AE, Venema K. 2016. Diet drives quick changes in the metabolic activity and composition of human gut microbiota in a validated in vitro gut model. Res Microbiol. 167(2):114–125.
  • Andriamihaja M, Davila A-M, Eklou-Lawson M, Petit N, Delpal S, Allek F, Blais A, Delteil C, Tomé D, Blachier F, et al. 2010. Colon luminal content and epithelial cell morphology are markedly modified in rats fed with a high-protein diet. Am J Physiol Gastr L. 299(5):G1030–1037.
  • Arena ME, Manca de Nadra MC. 2001. Biogenic amine production by Lactobacillus. J Appl Microbiol. 90(2):158–162.
  • Blachier F, Mariotti F, Huneau JF, Tomé D. 2007. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids. 33(4):547–562.
  • Canh TT, Aarnink AJA, Schutte JB, Sutton A, Langhout DJ, Verstegen MWA. 1998. Dietary protein affects nitrogen excretion and ammonia emission from slurry of growing-finishing pigs. Livest Prod Sci. 56(3):181–191.
  • Carmody RN, Gerber GK, Luevano JM, Gatti DM, Somes L, Svenson KL, Turnbaugh PJ. 2015. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe. 17(1):72–84.
  • Chen L, Li P, Wang J, Li X, Gao H, Yin Y, Hou Y, Wu G. 2009. Catabolism of nutritionally essential amino acids in developing porcine enterocytes. Amino Acids. 37(1):143–152.
  • Chen X, Song P, Fan P, He T, Jacobs D, Levesque CL, Johnston LJ, Ji L, Ma N, Chen Y, et al. 2018. Moderate dietary protein restriction optimized gut microbiota and mucosal barrier in growing pig model. Front Cell Infect Microbiol. 8:246.
  • Cremin JD, Jr, Fitch MD, Fleming SE. 2003. Glucose alleviates ammonia-induced inhibition of short-chain fatty acid metabolism in rat colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol. 285(1):G105–G114.
  • Dai ZL, Li XL, Xi PB, Zhang J, Wu G, Zhu WY. 2012. Metabolism of select amino acids in bacteria from the pig small intestine. Amino Acids. 42(5):1597–1608.
  • Dai ZL, Zhang J, Wu G, Zhu WY. 2010. Utilization of amino acids by bacteria from the pig small intestine. Amino Acids. 39(5):1201–1215.
  • David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 23(505(7484):559–563.
  • Diether NE, Willing BP. 2019. Microbial fermentation of dietary protein: An important factor in diet–microbe–host interaction. Microorganisms. 7(1):19.
  • Di Lorenzo M, Bass J, Krantis A. 1995. An intraluminal model of necrotizing enterocolitis in the developing neonatal piglet. J Pediatr Surg. 30(8):1138–1142.
  • Ducatelle R, Goossens ED, Meyer F, Eeckhaut V, Antonissen G, Haesebrouck FV, Immerseel F. 2018. Biomarkers for monitoring intestinal health in poultry: Present status and future perspectives. Vet. Res. 49:1–9.
  • Fan P, Liu P, Song P, Chen X, Ma X. 2017. Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Sci Rep. 7:43412.
  • Friend DW, Cunningham HM, Nicholson JWG. 1963. Volatile fatty acids and lactic acid in the alimentary tract of the young pig. Can. J Anim Sci. 43(1):174–181.
  • Fuller R. 1977. The Importance of Lactobacilli in maintaining normal microbial balance in the crop. Br Poult Sci. 18(1):85–94.
  • Gao J, Yin J, Xu K, Li T, Yin Y. 2019. What is the impact of diet on nutritional diarrhea associated with gut microbiota in weaning piglets: a System Review. Biomed Res Int. 2019:6916189.
  • Giger-Reverdin S, Duvaux-Ponter C, Sauvant D, Martin O, Do Prado IN, Müller R. 2002. Intrinsic buffering capacity of feedstuffs. Anim Feed Sci Tech. 96(1-2):83–102.
  • Gloaguen M, Le Floc’h N, Van Milgen J. 2013. Couverture des besoins en acides aminés chez le porcelet alimenté avec des régimes à basse teneur en protéines. Prod Anim. 26:277–288.
  • Gresse R, Chaucheyras-Durand F, Fleury MA, Van de Wiele T, Forano E, Blanquet-Diot S. 2017. Gut microbiota dysbiosis in postweaning piglets: understanding the keys to health. Trends Microbiol. 25(10):851–873.
  • Gresse R, Chaucheyras Durand F, Dunière L, Blanquet-Diot , Forano E. 2019. Microbiota composition and functional profiling throughout the gastrointestinal tract of commercial weaning piglets. Microorganisms. 7(9):343.
  • Han H, Yin J, Wang B, Huang X, Yao J, Zheng J, Fan W, Li T, Yin Y. 2018. Effects of dietary lysine restriction on inflammatory responses in piglets. Sci Rep. 8:1–8.
  • He L, Yang H, Hou Y, Li T, Fang J, Zhou X, Yin Y, Wu L, Nyachoti M, Wu G. 2013. Effects of dietary l-lysine intake on the intestinal mucosa and expression of CAT genes in weaned piglets. Amino Acids. 45(2):383–391.
  • Heo JM, Opapeju FO, Pluske JR, Kim JC, Hampson DJ, Nyachoti CM. 2013. Gastrointestinal health and function in weaned pigs: A review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. J Anim Physiol Anim Nutr. 97(2):207–237.
  • Ichikawa H, Sakata T. 1998. Stimulation of epithelial cell proliferation of isolated distal colon of rats by continuous colonic infusion of ammonia or short-chain fatty acids is nonadditive. J Nutr. 128(5):843–847.
  • Kuley E, Balikci E, Özoǧul I, Gökdogan S, Özoǧul F. 2012. Stimulation of cadaverine production by foodborne pathogens in the presence of lactobacillus, lactococcus, and streptococcus spp. J Food Sci. 77(12):M650–M658.
  • Lallès JP, Bosi P, Smidt H, Stokes CR. 2007. Nutritional management of gut health in pigs around weaning. Proc Nutr Soc. 66(2):260–268.
  • Langille MG. 2018. Exploring linkages between taxonomic and functional profiles of the human microbiome. MSystems. 3(2):e00163-17.
  • Le Floc’h N, Wessels A, Corrent E, Wu G, Bosi P. 2018. The relevance of functional amino acids to support the health of growing pigs. Anim Feed Sci Technol. 245:104–116.
  • Lebeer S, Vanderleyden J, De Keersmaecker SCJ. 2008. Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev. 72(4):728–764.
  • Leschelle X, Robert V, Delpal S, Mouillé B, Mayeur C, Martel P, Blachier F. 2002. Isolation of pig colonic crypts for cytotoxic assay of luminal compounds: Effects of hydrogen sulfide, ammonia, and deoxycholic acid. Cell Biol Toxicol. 18(3):193–203.
  • Lin J. 2004. Too much short chain fatty acids cause neonatal necrotizing enterocolitis. Med Hypotheses. 62(2):291–293.
  • Ma N, Tian Y, Wu Y, Ma X. 2017. Contributions of the interaction between dietary protein and gut microbiota to intestinal health. Curr Protein Pept Sci. 18(8):795–808.
  • Mariat D, Firmesse O, Levenez F, Guimarăes V, Sokol H, Doré J, Corthier G, Furet J-P. 2009. The firmicutes/bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 9:123–126.
  • Minitab 18 Statistical Software 2018. [Computer software]. State College (PA): Minitab, Inc. Available from: www.minitab.com
  • Mu C, Yang Y, Luo Z, Guan L, Zhu W. 2016. The colonic microbiome and epithelial transcriptome are altered in rats fed a high-protein diet compared with a normal-protein diet J. Nutri. 146(3): 474-483.
  • Mulder IE, Schmidt B, Stokes CR, Lewis M, Bailey M, Aminov RI, Prosser JI, Gill BP, Pluske JR, Mayer CD, et al. 2009. Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces. BMC Biol. 7:79–20.
  • Nakamura A, Ooga T, Matsumoto M. 2019. Intestinal luminal putrescine is produced by collective biosynthetic pathways of the commensal microbiome. Gut Microbes. 10(2):159–171.
  • Kraimi N, Dawkins M, Gebhardt-Henrich SG, Velge P, Rychlik I, Volf J, Creach P, Smith A, Colles F, Leterrier C. 2019. Influence of the microbiota-gut-brain axis on behavior and welfare in farm animals: A review. Physiol Behav. 210:112658.
  • Niven SJ, Beal JD, Brooks PH. 2006. The effect of controlled fermentation on the fate of synthetic lysine in liquid diets for pigs. Anim. Feed Scie Techn. 129(3-4):304–315.
  • Noblet J, Valancogne A, Tran G. 2008. Ajinomoto Eurolysine sas, EvaPig®.[1.0. 1.4]. Computer program.
  • Paulsen JE, Reistad R, Eliassen KA, Sjaastad ØV, Alexander J. 1997. Dietary polyamines promote the growth of azoxymethane-induced aberrant crypt foci in rat colon. Carcinogenesis. 18(10):1871–1875.
  • Pedersen KS, Strunz AM. 2013. Evaluation of farmers’ diagnostic performance for detection of diarrhoea in nursery pigs using digital pictures of faecal pools. Acta Vet Scand . 55(1):72.
  • Pieper R, Villodre Tudela C, Taciak M, Bindelle J, Pérez JF, Zentek J. 2016. Health relevance of intestinal protein fermentation in young pigs. Anim Health Res Rev. 17(2):137–147.
  • Pluske JR, Pethick DW, Hopwood DE, Hampson DJ. 2002. Nutritional influences on some major enteric bacterial diseases of pig. Nutr Res Rev. 15(2):333–371.
  • Pollock J, Hutchings MR, Hutchings KEK, Gally DL, Houdijk JGM. 2019. Changes in the ileal, but not fecal, microbiome in response to increased dietary protein level and enterotoxigenic Escherichia coli exposure in pigs. Appl Environ Microbiol. 85(19):e01252–e01219.
  • R Core Team 2019. A language and environment for statistical computing. Vienna: R Foundation for statistical computing.
  • Ren M, Zhang SH, Zeng XF, Liu H, Qiao SY. 2015. Branched-chain amino acids are beneficial to maintain growth performance and intestinal immune-related function in weaned piglets fed protein restricted diet. Asian Australas J Anim Sci. 28(12):1742–1750.
  • Sajeev EPM, Amon B, Ammon C, Zollitsch W, Winiwarter W. 2018. Evaluating the potential of dietary crude protein manipulation in reducing ammonia emissions from cattle and pig manure: A meta-analysis. Nutr Cycl Agroecosyst. 110(1):161–175.
  • Salaheen S, Kim SW, Haley BJ, Van Kessel JAS, Biswas D. 2017. Alternative growth promoters Modulate broiler gut microbiome and enhance body weight gain. Front Microbiol. 8:2088–2011.
  • Sauvant D, Perez JM, Tran G. 2002. Tables de composition et de valeur nutritive des matières premières destinées aux animaux d'élevage. Porcs, volailles, bovins, ovins, caprins, lapins, chevaux, poissons. Paris: INRA Editions.
  • Sauvant D, Perez JM, Tran G. 2004. Tables of composition and nutritional value of feed materials. Pigs, pultry, cattle, sheep, goats, rabbits, horses, fish. Paris: INRA Editions.
  • Stokes CR, Bailey M, Haverson K, Harris C, Jones P, Inman C, Pié S, Oswald IP, Williams B. a, Akkermans ADL, et al. 2004. Postnatal development of intestinal immune system in piglets: implications for the process of weaning. Anim Res. 53(4):325–334.
  • Trevisi P, Luise D, Correa F, Bosi P. 2021. Timely control of gastrointestinal eubiosis: a strategic pillar of pig health. Microorganisms. 9(2):313.
  • Vince A, Dawson AM, Park N, O'Grady F. 1973. Ammonia production by intestinal bacteria. Gut. 14(3):171–177.
  • Wang H, Long W, Chadwick D, Velthof GL, Oenema O, Ma W, Wang J, Qin W, Hou Y, Zhang F. 2020. Can dietary manipulations improve the productivity of pigs with lower environmental and economic cost? A global meta-analysis. Agric Ecosyst Environ. 289:106748.
  • Wang H, Shen J, Pi Y, Gao K, Zhu W. 2019. Low-protein diets supplemented with casein hydrolysate favor the microbiota and enhance the mucosal humoral immunity in the colon of pigs. J Anim Sci Biotechnol. 10:1–13.
  • Wang JY, Johnson LR. 1992. Luminal polyamines substitute for tissue polyamines in duodenal mucosal repair after stress in rats. Gastroenterology. 102(4 Pt 1):1109–1117.
  • Wang Y, Zhou J, Wang G, Cai S, Zeng X, Qiao S. 2018. Advances in low-protein diets for swine. J Anim Scie Biotech. 9(1):60.
  • Wen X, Wang L, Zheng C, Yang X, Ma X, Wu Y, Chen Z, Jiang Z. 2018. Fecal scores and microbial metabolites in weaned piglets fed different protein sources and levels. Anim Nutr. 4(1):31–36.
  • Windey K, de Preter V, Verbeke K. 2012. Relevance of protein fermentation to gut health. Mol Nutr Food Res. 56(1):184–196.
  • Yang Z, Liao SF. 2019. Physiological effects of dietary amino acids on gut health and functions of swine. Front Vet Sci. 6:169.
  • Yang H, Xiong X, Yin Y. 2013. Development and renewal of intestinal villi in pigs. In: Nutritional and physiological functions of amino acids in pigs . Vienna: Springer, p. 29–47.
  • Yu D, Zhu W, Hang S. 2019. Effects of long-term dietary protein restriction on intestinal morphology, digestive enzymes, gut hormones, and colonic microbiota in pigs. Animals. 9(4):180–114.
  • Zhang C, Yu M, Yang Y, Mu C, Su Y, Zhu W. 2016. Effect of early antibiotic administration on cecal bacterial communities and their metabolic profiles in pigs fed diets with different protein levels. Anaerobe. 42:188–196.
  • Zhang K, Wang N, Lu L, Ma X. 2020. Fermentation and metabolism of dietary protein by intestinal microorganisms. Curr Protein Pept Sci. 21(8):807–811.
  • Zheng L, Wei H, Cheng C, Xiang Q, Pang J, Peng J. 2016. Supplementation of branched-chain amino acids to a reduced-protein diet improves growth performance in piglets: involvement of increased feed intake and direct muscle growth-promoting effect. Br J Nutr. 115(12):2236–2245.
  • Zhou L, Fang L, Sun Y, Su Y, Zhu W. 2016. Effects of the dietary protein level on the microbial composition and metabolomic profile in the hindgut of the pig. Anaerobe. 38:61–69.