189
Views
55
CrossRef citations to date
0
Altmetric
Original Articles

Multi-Criteria and Multi-Stage Facility Location Selection under Interval Type-2 Fuzzy Environment: A Case Study for a Cement Factory

&
Pages 330-344 | Received 22 Oct 2013, Accepted 10 Nov 2014, Published online: 23 Dec 2014

References

  • J. Heizer and B. Render, Operations Management, 6th edn. (Prentice Hall, NJ, 2001).
  • B. Kobu, Uretim Yonetimi (Production Management) 11th edn, (Avciol Basim Yaym, Istanbul, 2003).
  • R. Russell and B. W. Taylor, Operations Management, 4th edn. (Prentice Hall, 2003).
  • N. Slack, S. Chambers and R. Johnston, Operations Management, 4th edn. (Prentice Hall, 2004).
  • R. Haigh, Selecting a US plant location: The management decision process in foreign companies. Columbia J. World Bus., 25(3) (1990) 22–31.
  • J. Yang and H. Lee, An analytic hierarchy process decision model for facility location selection. Facilities., 15(9/10) (1997) 241–254.
  • P. Kumar and R. K. Singh, A fuzzy AHP and TOPSIS methodology to evaluate 3PL in a supply chain. J. Model. Manage., 7(3) (2012) 287–303.
  • J. M. Mendel, Advances in Type-2 fuzzy sets and systems. Inform. Sciences., 177 (2007) 84–110.
  • T. Dereli, A. Baykasoglu, K. Altun, A. Durmusoglu and I. B. Ttirksen, Industrial applications of Type-2 fuzzy sets and systems: A concise review. Comput. Ind., 62 (2011) 125–137.
  • S.- M. Chen and L. W. Lee, Fuzzy multiple attributes group decision-making based on the interval Type-2 TOPSIS method. Expert Syst. Appl., 37 (2010) 2790–2798.
  • J. Current, H. Min and D. Schilling, Multiobjective analysis of facility location decisions. Eur. J. Oper. Res., 49(3) (1990) 295–307.
  • P. K. Dey and E. K. Ramcharan, Analytic hierarchy process helps select site for limestone quarry expansion in Barbados. J Environ. Manage., 88 (2008) 1384–1395.
  • M. Tabari, A. Kaboli, M. B. Aryanezhad, K. Shahanaghi and A. Siadat, A new method for location selection: A hybrid analysis. Appl. Math. Comput., 206 (2008) 598–606.
  • I. Dogan, Analysis of facility location model using Bayesian Networks. Expert Syst. Appl., 39 (2012) 1092–1104.
  • R. J. Kuo and S. S. Kao, A decision support system for locating convenience store through fuzzy AHP. Comput Ind. Eng., 37 (1999) 323–326.
  • R. J. Kuo, S. C. Chi and S. S. Kao, A decision support system for selecting convenience store location through integration of fuzzy AHP and artificial neural network. Comput. Ind., 47 (2002) 199–214.
  • J. Korpela and M. Tuominen, A decision aid in warehouse site selection. Int. J. Oper. Prod. Econ., 45(1) (1996) 169–180.
  • P. Thomas, Y. Chan, L. Lehmkuhl and W. Nixon, Obnoxious-facility location and data-envelopment analysis: A combined distance-based formulation. Eur. J. Oper. Res., 141 (2002) 495–514.
  • F. Y. Partovi, An analytic model for locating facilities strategically. Omega., 34 (2006) 41–55.
  • G. Tuzkaya, S. Onut, U. R. Tuzkaya and B. Gulsun, An analytic network process approach for locating undesirable facilities: An example from Istanbul, Turkey. J. Environ. Manage., 88 (2008) 970–983.
  • O. Saatcioglu, Mathematical programming models for airport site selection. Transport. Res. B-Meth., 16(6) (1982) 435–447.
  • R. L. Francis, L. F. McGinnis and J. A. White, Locational analysis. Eur. J. Oper. Res., 12(3) (1983) 220–252.
  • H. W. Hamacher and S. Nickel, Classification of location models. Location Sci., 6(1-4) (1998) 229–242.
  • J. Current, S. Ratick and C. ReVelle, Dynamic facility location when the total number of facilities is uncertain: A decision analysis approach. Eur. J. Oper. Res., 110(3) (1998) 597–609.
  • M. Badri, Combining the analytic hierarchy process and goal programming for global facility location-allocation problem. Int. J. Oper. Prod. Econ., 62(3) (1999) 237–248.
  • C. Canel, B. M. Khumawala, J. Law and A. Loh, An algorithm for the capacitated, multi-commodity multi-period facility location problem. Comput. Oper.Res., 28 (2001) 411–427.
  • S. Melkote and M. S. Daskin, Capacitated facility location/network design problems. Eur. J. Oper.Res., 129 (2001) 481–495.
  • V. Verter, An integrated model for facility location and technology acquisition. Comput. Oper.Res., 29 (2002) 583–592.
  • E. W. L. Cheng and H. Li, Exploring quantitative methods for project location selection. Build Environ., 39(12) (2004) 1467–1476.
  • P. N. Thanh, N. Bostel and O. Peton, A dynamic model for facility location in the design of complex supply chains. Int. J. Prod. Econ., 113(2) (2008) 678–693.
  • A. Klose and A. Drexl, Facility location models for distribution system design. Eur. J. Oper.Res., 162(1) (2005) 4–29.
  • A. B. Arabani and R. Z. Farahani, Facility location dynamics: An overview of classifications and applications. Comput. Ind. Eng., 62 (2012) 408–420.
  • L. A. Zadeh, Fuzzy Sets. Inform. Control., 8 (1965) 338–353.
  • C. Kahraman, D. Ruan and I. Dogan, Fuzzy group decision-making for facility location selection. Inform. sciences., 157 (2003) 135–153.
  • S. Y. Chou, Y. H. Chang and C. Y. Shen, A fuzzy simple additive weighting system under group decision-making for facility location selection with objective/subjective attributes. Eur. J. Oper. Res., 189 (2008) 132–145.
  • C. Y. Shen and K. T. Yu, A generalized fuzzy approach for strategic problems: The empirical study on facility location selection of authors’ management consultation client as an example. Expert Syst. Appl., 36(3) (2009) 4709–4716.
  • K. Anagnostopoulos, H. Doukas and J. Psarras, A linguistic multicriteria analysis system combining fuzzy sets theory, ideal and anti-ideal points for location site selection. Expert Syst. Appl., 35(4) (2008) 2041–2048.
  • P. Dheena and G. Mohanraj, Multi-criteria decision-making combining fuzzy set theory, ideal and anti-ideal points for location site selection. Expert Syst. Appl., 38 (2011) 13260–13265.
  • A. Awasthia, S. S. Chauhanb and S. K. Goyal, A multicriteria decision making approach for location planning for urban distribution centers under uncertainty. Math. Comput. Model., 53 (2011) 98–109.
  • S. - and C. Ngan, Decision making with extended fuzzy linguistic computing, with applications to new product development and survey analysis. Expert Syst. Appl., 38 (2011) 14052–14059.
  • M. N. Mokhtarian, A new fuzzy weighted average (FWA) method based on left and right scores: An application for determining a suitable location for a gas oil station. Comput. Math. Appl., 61(10) (2011) 3136–3145.
  • N. N. Karnik and J. M. Mendel, Centroid of a Type-2 fuzzy set. Inform. Sciences., 132 (2001) 195–220.
  • I. B. Turksen, Type2 representation and reasoning for CWW. Fuzzy Set. Syst., 127 (2002) 17–36.
  • Z. Zhang and S. Zhang, A novel approach to multi attribute group decision making based on trapezoidal interval Type-2 fuzzy soft sets. Appl. Math. Model., 37 (2013) 4948–4971.
  • R Sepulveda, O. Castillo, P. Melin, A. Rodriguez-Diaz and O. Montiel, Experimental study of intelligent controllers under uncertainty using Type-1 and Type-2 fuzzy logic. Inform. Sciences., 177 (2007) 2023–2048.
  • N. N. Karnik, J. M. Mendel and Q. Liang, Type-2 fuzzy logic systems. IEEE T. Fuzzy Syst., 7(6) (1999) 643–658.
  • A. Kazemzadeh, S. Lee and S. S. Narayanan, An interval Type-2 fuzzy logic system to translate between emotion-related vocabularies, in Proc. Interspeech (Brisbane, Australia, 2008), pp. 2747–2750.
  • A. Celikyilmaz and I. B. Turksen, Modeling uncertainty with fuzzy logic with recent theory and applications, in Studies in Fuzziness and Soft Computing, 240 (Springer, Germany, 2009).
  • R. John, Type 2 Fuzzy Sets: An Appraisal of Theory and Applications. Int. J. Unc. Fuzz. Knowl. Based Syst, 06,563 (1998) 563–576.
  • J. M. Mendel, Fuzzy Type-2 Sets and System:. IEEE Computational Intelligence Magazine., 2(1) (2007) 20–29.
  • S. Miller and R. John, An Interval Type-2 Fuzzy multiple echelon supply chain model. Knowl-Based. Syst., 23 (2010) 363–368.
  • C. Kahraman, L Sari and E. Turanoglu, Fuzzy analytic hierarchy process with Type-2 fuzzy sets, in Proc. 10th Int. FLINS Conf. on Uncertainty Modeling in Knowledge Engineering and Decision Making, eds. C. Kahraman, E. Kerre and F.T. Bozbura (Istanbul, Turkey, 2012) pp. 201–212.
  • T. - and Y. Chen, A linear assignment method for multiple-criteria decision analysis with interval Type-2 fuzzy sets. Appl. Soft. Comput., 13 (2013) 2735–2748.
  • E. Celik, O. N. Bilisik, M. Erdogan, A. T. Gumus and H. Baracli, An integrated novel interval Type-2 fuzzy MCDM method to improve customer satisfaction in public transportation for Istanbul. Transport. Res. E-Log., 58 (2013) 28–51.
  • T. Dereli and K. Altun, Technology evaluation through the use of interval Type-2 fuzzy sets and systems. Comput. Ind. Eng., 65 (2013) 624–633.
  • S.- C. Ngan, A Type-2 linguistic set theory and its application to multi-criteria decision making. Comput. Ind. Eng., 64 (2013) 721–730.
  • N. Zamri and L. Abdullah, A new linguistic variable in interval type-2 fuzzy entropy weight of a decision making method, in 17th Asia Pasific symposium on Intelligent and Evolutionary systems, IES. Procedia Comput Science., 24(2013) (2013) 42–53.
  • S.-M. Chen and C.-Y. Wang, Fuzzy decision making systems based on interval type-2 fuzzy sets. Inform. Sciences., 242 (2013) 1–21.
  • Y. Jiang and Y. Tang, An interval type-2 fuzzy modelof computing with words. Inform. Sciences., 281 (2014) 418442.
  • C. Kahraman, B. Oztaysi, L Ucal Sari and E. Turanoglu. Fuzzy analytic hierarchy process with interval type-2 fuzzy sets. Knowl-Based. Syst., 59 (2014) 48–57.
  • L. Abdullah and L. Najib, A new type-2 fuzzy set of linguistic variables for the fuzzy analytic hierarchy process. Expert Syst. Appl., 41 (2014) 3297–3305.
  • Y. Maali and N. Mahdavi-Amiri, A triangular type-2 multi-objective linear programming model and a solution strategy. Inform. Sciences., 279 (2014) 816–826.
  • D. Wu and J. M. Mendel, A comparative study of ranking methods, similarity measures and uncertainty measures for interval Type-2 fuzzy sets. Inform. Sciences., 179 (2009) 1169–1192.
  • S.- M. Chen and L.- W. Lee, Fuzzy multiple attributes group decision-making based on the ranking values and the arithmetic operations of interval Type-2 fuzzy sets. Expert Syst. Appl., 37 (2010) 824–833.
  • W. Wang, X. Liu and Y. Qin, Multi-attribute group decision making models under interval Type-2 fuzzy environment. Knowl-Based. Syst., 30 (2012) 121–128.
  • Z. Eren and C. E. Bozdag, An extended method for fuzzy multiple attribute group decision making based on interval Type-2 fuzzy sets, in Proc. 10th Int. FLINS Conf. on Uncertainty Modeling in Knowledge Engineering and Decision Making, eds. C. Kahraman, E. Kerre and F.T. Bozbura (Istanbul, Turkey, 2012) pp. 164–170.
  • S.- M. Chen and C. Y. Wang, Fuzzy decision making systems based on interval Type-2 fuzzy sets. Inform. Sciences., 242 (2013) 1–21.
  • T.-Y. Chen, An ELECTRE-based outranking method for multiple criteria group decision making using interval type-2 fuzzy sets. Inform. Sciences., 263 (2014) 1–21.
  • L. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Part 1. Inform. Sciences., 8 (1975) 199–249.
  • H. Siahkali and M. Vakilian, Interval Type-2 fuzzy modeling of wind power generation in Genco's generation scheduling. Electr. Pow. Syst. Res., 81(8) (2011) (2012) 1696–1708.
  • World Cement; Higher, Faster, Stronger in Efficiency, Palladian Publications Ltd., England43(6),
  • K. Ersen and E. Biiyukyazici. Economic news from the sector: Turkish cement sector. in Cement and Concrete World, 17 (2011) 36–43.
  • I. Otayand F. Cebi, An integrated multi-criteria decision making methodology for facility location selection problem under fuzzy environment: application in cement sector, in Proc. 10th Int. FLINS Conf. on Uncertainty Modeling in Knowledge Engineering and Decision Making, eds. C. Kahraman, E. Kerre and F.T. Bozbura (Istanbul, Turkey, 2012) pp. 279–284.
  • R. Z. Farahani, M. SteadieSeifi and N. Asgari, Multiple criteria facility location problems: A survey. Appl. Math. Model., 34(7) (2010) 1689–1709.
  • L. J. Krajewski and L. P. Ritzman, Operations management: Strategy and analysis. (Prentice Hall, 2002).
  • I. Ertugrul and N. Karakasoglu, Comparison of fuzzy AHP and fuzzy TOPSIS methods for facility location selection. Int. J. Adv. Manuf. Tech., 39(7-8) (2002) 783795.
  • J. Sarkis and R. P. Sundarraj. Hub location at Digital Equipment Corporation: A comprehensive analysis of qualitative and quantitative factors. Eur. J. Oper. Res., 137(2) (2008) 336–347.
  • M. Ekmekcioglu, T. Kaya and C. Kahraman, Fuzzy multicriteria disposal method and site selection for municipal solid waste. Waste Manage., 30(8-9) (2010) 1729–1736.
  • S.-M. Chen, M.-W. Yang, L.-W. Lee and S.-Z. Yang, Fuzzy multiple attributes group decision making based on ranking interval Type-2 fuzzy sets. Expert Syst. Appl., 39 (2012) 5295–5308.
  • H. Aras, S. Erdogmus and E. Koc, Multi-criteria selection for a wind observation station location using analytic hierarchy process. Renew. Energy., 29(8) (2004) 1383–1392.
  • Z. Adeli and A. Khorshiddous, Application of geomorphology in urban planning: Case study in landfill site selection. Procedia - Social and Behavioral Sciences, 19 (2011) 662–667.
  • H. K. Gupta, Encyclopedia of Solid Earth Geophysics, (The Netherland: Springer, 1989).
  • E. Conrad, S. Misenar and J. Feldman, Cissp Study Guide, (Syngress, USA, 2012).
  • P. A. Alsop, H. Chen and H. Tseng, The Cement Plant Operations Handbook for Dry-Process Plants. 5th edn, (Tradeship Publications Ltd., UK, 2007.
  • S. Topbas, Regulating clinker quality. World Cement, 43(4) (2012) 91–97.
  • M. Christiansena, K. Fagerholta, T. Flatbergc, Ø. Haugena, O. Klosterc and E. H. Lunda, Maritime inventory routing with multiple products: A case study from the cement industry. Eur. J. Oper. Res., 208(1) (2011) 86–94.
  • J. J. Buckley, Fuzzy hierarchical analysis. Fuzzy Set Syst, 17 (1985) 233–247.
  • J. Zeng, M. An and N. J. Smith, Application of a fuzzy based decision making methodology to construction project risk assessment. Intern J. Proj Manage, 25 (2007) 589–600.
  • G. Zhang, J. Ma and J. Lu, Emergency management evaluation by a fuzzy multi-criteria group decision support system. Stoch Env Res Risk A, 23(4) (2009) 517527.
  • J. Lu, Y. Zhu, X. Zeng, L. Koehl, J. Ma and G. Zhang. A linguistic multi-criteria group decision support system for fabric hand evaluation. Fuzzy Optim Decis Making, 8(4) (2009) 395–413.
  • D. Fatta, P. Saravanos and M. Loizidou, Industrial waste facility site selection using geographical information system techniques. Intern. J. Environmental Studies, 56 (1998) 1–14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.