69
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Intelligent Decision Support System for Real-Time Water Demand Management

, , &
Pages 168-183 | Received 17 Jan 2015, Accepted 01 Jan 2016, Published online: 03 Feb 2016

References

  • A. S. Mohamed and H. H. G. Savenije, Water Demand Management: Positive Incentives, Negative Incentives or Quota Regulation?, Phys Chem Earth Pt B. 25 (2000) 251–258. doi: 10.1016/S1464-1909(00)00012-5
  • D. B. Brooks, An Operational Definition of Water Demand Management, Int J Water Resour D. 22 (2006) 521–528. doi: 10.1080/07900620600779699
  • R. A. Young, Price Elasticity of Demand for Municipal Water: A Case Study of Tucson, Arizona, Water Resour Res. 9 (1973) 599–610.
  • R. H. Willsie and L. H. Pratt, Water use relationships and projection corresponding with regional growth Seattle region, Water Resour Bull. 10 (1974) 360–371. doi: 10.1111/j.1752-1688.1974.tb00575.x
  • D. R. Maidment and E. Parzen, Cascade model of monthly municipal water use, Water Resour Res. 20 (1984) 15–23. doi: 10.1029/WR020i001p00015
  • R. B. Billings and D. E. Agthe, State-space versus multiple regression for forecasting urban water demand, Nord Hydrol. 35 (1998) 411–430.
  • S. Gato, N. Jayasuriya and P. Roberts, Temperature and rainfall thresholds for base use urban water demand modeling, J Hydrol. 337 (2007) 364–376. doi: 10.1016/j.jhydrol.2007.02.014
  • J. Bougadis, K. Adamowski and R. Diduch, Short-term municipal water demand forecasting, Hydrol Process. 19 (2005) 137–148. doi: 10.1002/hyp.5763
  • M. Herrera, L. Torgo, J. Izquierdo and R. Pérez-García, Predictive models for forecasting hourly urban water demand, J Hydrol. 387 (2010) 101–140. doi: 10.1016/j.jhydrol.2010.04.005
  • Empresa Municipal de Aguas de Gijón (Spain). http://agua.gijon.es/. Last Access: October 30, 2015.
  • D. Maidment and S. Miaou, Daily water use in nine cities, Water Resour Res. 22 (1986) 845–851. doi: 10.1029/WR022i006p00845
  • G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting and Control (Holden Day, San Francisco, CA, 1970)
  • A. An, C. C. Shan, N. Cercone and W. Ziarko, Discovering rules from data for water demand prediction, in Proceedings in the Workshop on Machine Learning and Expert System (1995), pp. 187–202.
  • L. Shvartser, U. Shamir, and M. Feldman, Forecasting Hourly Water Demands by Pattern – Recognition Approach, J Water Res Pl-ASCE. 119 (1993) 611–627. doi: 10.1061/(ASCE)0733-9496(1993)119:6(611)
  • G. A. Darbellay and M. Slama, Forecasting the short-term demand for electricity – Do neural networks stand a better chance?, International Journal of Forecasting. 16 (2000) 71–83. doi: 10.1016/S0169-2070(99)00045-X
  • N. Lertpalangsunti, C. Chan, R. Mason, and P. Tontiwachwuthikul, A tool set for construction of hybrid intelligent forecasting systems: application for water demand prediction, Artif Intell Eng. 13 (1999) 21–42. doi: 10.1016/S0954-1810(98)00008-9
  • A. Jain and L. E. Ormsbee, Short-term water demand forecasting modeling techniques-conventional versus AI, Journal AWWA. 94 (2002) 64–72.
  • J. Liu, H. G. Savenije, and J. Xu, Forecast of water demand in Weinan city in China using WDF-ANN model, Phys Chem Earth. 28 (2002) 219–224. doi: 10.1016/S1474-7065(03)00026-3
  • M. Nasseri, A. Moeini, and M. Tabesh. Forecasting monthly urban water demand using Extenden Kalman Filter and Genetic Programming, Expert Syst Appl. 38 (2011) 7387–7395. doi: 10.1016/j.eswa.2010.12.087
  • L. Zhang, L. B. Jack and A. K. Nandi, Fault detection using genetic programming forecasting, Mech Syst Signal Pr. 19 (2005) 271–289. doi: 10.1016/j.ymssp.2004.03.002
  • D. Shrestha and D. Solomatine, Machine learning approach for estimation of prediction interval for the model output, Neural Networks. 19 (2006) 225–236. doi: 10.1016/j.neunet.2006.01.012
  • M. Tabesh and M. Dini, Fuzzy and neuro-fuzzy models for short-term water demand forecasting in Tehran, Iran J Sci Technol B. 33 (2009) 61–77.
  • I. Msiza, F. Nelwamondo and T. Marwala, Artificial neural networks and support vector machines for water demand time series forecasting, in IEEE International Conference on Systems, Man and Cybernetics (2007), pp. 638–643.
  • B. Ponte, L. Ruano, R. Pino and D. De la Fuente, The Bullwhip effect in water demand management: taming it through an artificial neural networks-based system, J Water Supply Res T 64 (2015) 290–301. doi: 10.2166/aqua.2015.087
  • J. Costas, B. Ponte, D. De la Fuente, R. Pino and J. Puche, Applying Goldratt's Theory of Constraints to reduce the Bullwhip Effect through agent-based modeling. Expert Syst Appl. 42 (2015) 2049–2060. doi: 10.1016/j.eswa.2014.10.022
  • L. Breiman, Random Forests, Mach Learn. 45 (2001) 5–32. doi: 10.1023/A:1010933404324
  • G. Moisen and T. Frescino, Comparing five modeling techniques for predicting forest characteristics, Ecol Model. 157 (2002) 209–225. doi: 10.1016/S0304-3800(02)00197-7
  • S. Moss and B. Edmonds, Sociology and Simulation: Statistical and Qualitative Cross – Validation, Am J Sociol. 110 (2005) 1095–1131. doi: 10.1086/427320
  • I. N. Athanasiadis, A. K. Mentes, P. A. Mitkas and Y. A. Mylopoulos, A hybrid agent-based model for estimating residential water demand, Simul-Trans Soc M S. 81 (2005) 175–187.
  • J. M. Galán, A. López-Paredes, and R. Del Olmo, An agent-based model for domestic water management in Valladolid metropolitan area, Water Resour Res. 45 (2009) w05401.
  • E. M. Zechman, Agent-Based Modeling to Simulate Contamination Events and Evaluate Threat Management Strategies in Water Distribution Systems, Risk Anal, 31 (2011) 758–772. doi: 10.1111/j.1539-6924.2010.01564.x
  • M. Giuliani and A. Castelletti. Assessing the value of cooperation and information exchange in large water resources systems by agent-based optimization, Water Resour Res. 49 (2013) 3192–3296.
  • J. J. Ni, L. Ren, M. H. Liu and D. Q. Zhu, A Multi-agent Dynamic Assessment Approach for Water Quality Based or Improved Q-Learning Algorithm, Math Probl Eng, (2013) ID 812032.
  • J. Ni, M. Liu, L. Ren, and S. X. Yang, A multiagent Q-learning-based optimal allocation approach for urban water resource management system, IEEE T Autom Sci Eng. 11 (2014) 204–214. doi: 10.1109/TASE.2012.2229978
  • C. S. Karavas, G. Kyriakarakos, K. G. Arvanitis and G. Papadakis, A multi-agent decentralized energy management system based on distributed intelligence for the design and control of autonomous polygeneration microgrids. Energ Convers Manage. 103 (2015) 166–179. doi: 10.1016/j.enconman.2015.06.021
  • S. Makridakis, Accuracy measures: theoretical and practical concerns, Int J Forecasting. 9 (1993) 527–529. doi: 10.1016/0169-2070(93)90079-3
  • B. Ponte, D. De la Fuente, R. Pino and R. Rosillo, Real-time water demand forecasting system through an agent-based architecture, Int J Bio-Inspir Com. 7 (2015) 147–156. doi: 10.1504/IJBIC.2015.069559

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.