611
Views
34
CrossRef citations to date
0
Altmetric
Articles

Titanium dioxide and zinc oxide nanoparticles affect some bacterial diseases, and growth and physiological changes of beetroot

, , &

References

  • Aebi, H.1984. Catalase, p. 114–121. In: Colowick S.P. and Kaplan N.O, eds. In-vitro methods in enzymology. Vol. 105, Academic Press, New York.
  • Ahanger, M.A., and R.M. Agarwal. 2017. Potassium improves antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L). Protoplasma. 254(4):1471–1486. doi: 10.1007/s00709-016-1037-0.
  • Ahanger, M.A., R.M. Agarwal, N.S. Tomar, and M. Shrivastava. 2015. Potassium induces positive changes in nitrogen metabolism and antioxidant system of oat (Avena sativa L. cultivar Kent). J. Plant Int. 10(1):211–223.
  • Ahuja, I., R. Kissen, and A.M. Bones. 2012. Phytoalexins in defense against pathogens. Trends Plant Sci. 17:73–90. doi: 10.1016/j.tplants.2011.11.002.
  • Alghuthaymi, M.A., H. Almoammar, M. Rai, E. Said-Galiev, and K.A. Abd-Elsalam. 2015. Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol. Biotechnol. Equip. 29(2):221–236. doi: 10.1080/13102818.2015.1008194.
  • Anderson, M.E. 1985. Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 113:548–555. doi: 10.1016/S0076-6879(85)13073-9.
  • Apel, K., and H. Hirt. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55:373–399. doi: 10.1146/annurev.arplant.55.031903.141701.
  • Ayoubi, N., and M.J. Soleimani. 2014. Possible effects of pathogen inoculation and salicylic acid pre-treatment on the biochemical changes and proline accumulation in green bean. Arch. Phytopathol. Plant Prot. 48:212–222. doi: 10.1080/03235408.2014.884826.
  • Bates, L.S., R.T. Waldren, and I.D. Teare. 1973. Rapid determination of free proline for water stress studies. Plant Soil. 39:205–207. doi: 10.1007/BF00018060.
  • Baxter, A., R. Miller, and N. Suzuki. 2014. ROS as key players in plant stress signaling. J. Exp. Bot. 65:1229–1240. doi: 10.1093/jxb/ert375.
  • Beyer, W.F., and I. Fridovich. 1987. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal. Biochem. 161:559–566.
  • Brayner, R., R. Ferrari-Iliou, N. Brivois, S. Djediat, M.F. Benedetti, and F. Fiévet. 2006. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6:866–870. doi: 10.1021/nl052326h.
  • Cakmak, I. 2000. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 146:185–205. doi: 10.1046/j.1469-8137.2000.00630.x.
  • Caverzan, A., A. Casassola, and S.P. Brammer. 2016. Antioxidant responses of wheat plants under stress. Genet. Mol. Biol. 39(1):1–6. doi: 10.1590/1678-4685-GMB-2015-0109.
  • Cecchini, N.M., M.I. Monteoliva, and M.E. Alvarez. 2011. Proline dehydrogenase contributes to pathogen defense in Arabidopsis. Plant Physiol. 155:1947–1959. doi: 10.1104/pp.110.167163.
  • Chaman, M.E., S.V. Copaja, and V.H. Argandona. 2003. Relationships between salicylic acid content, phenylalanine ammonia-lyase (PAL) activity, and resistance of barley to aphid infestation. J. Agric. Food Chem. 51:2227–2231. doi: 10.1021/jf020953b.
  • Chand, S., and R. Dave. 2009. In vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: an overview. Afr. J. Microbiol. Res. 3:981–996.
  • Chen, Q., M. Zhang, and S. Shen. 2010. Effect of salt on malondialdehyde and antioxidant enzymes in seedling roots of Jerusalem artichoke (Helianthus tuberosus L.). Acta Physiol. Plant. 33:273–278. doi: 10.1007/s11738-010-0543-5.
  • Christopher, K., and E. Bruno. 2003. Identification of bacterial species in tested studies for laboratory teaching. Proc. 24th Workshop/Conference Association for Biology Laboratory Education 24:103–130.
  • Costet, L., S. Dorey, B. Fritig, and S. Kauffmann. 2002. A pharmacological approach to test the diffusible signal activity of reactive oxygen intermediates in elicitor-treated tobacco leaves. Plant Cell Physiol 43:91–98.
  • Cui, H., P. Zhang, and W. Gu. 2009. Application of anatase TiO2 sol derived from peroxotitannic acid in crop plant diseases control and growth regulation. Nanotech. Conf. and Expo, Houston, TX, 3-7 May 2009.
  • Daniel, R., and D. Guest. 2006. Defense responses induced by potassium phosphonate in Phytophthora palmivora challenged Arabidopsis thaliana. Physiol. Mol. Plant Pathol. 67:194–201. doi: 10.1016/j.pmpp.2006.01.003.
  • Dimkpa, C.O., J.E. McLean, D.E. Latta, E. Manangón, D.W. Britt, W.P. Johnson, M.I. Boyanov, and A.J. Anderson. 2012. CuO and ZnO nanoparticles: phytotoxicity, metal speciation and induction of oxidative stress in sand-grown wheat. J. Nanopart. Res. 14:1125–1140. doi: 10.1007/s11051-012-1125-9.
  • Dixon, R.A., and N.L. Paiva. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell. 7:1085–1097. doi: 10.1105/tpc.7.7.1085.
  • Faizan, M., A. Faraz, M. Yusuf, S.T. Khan, and S. Hayat. 2018. Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica. 56: 678–686. https://link.springer.com/article/10.1007/s11099-017-0717-0. doi:10.1007/s11099-017-0717-0
  • Fang, M., J.H. Chen, X.L. Xu, P.H. Yang, and H.F. Hildebrand. 2006. Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int. J. Antimicrob. Agents. 27:513–517. doi: 10.1016/j.ijantimicag.2006.01.008.
  • Gajjar, P., B. Pettee, D.W. Britt, W. Huang, W.P. Johnson, and A.J. Anderson. 2009. Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J. Biol. Eng. 3:1183–1189. doi: 10.1186/1754-1611-3-9.
  • Gao, F., F. Hong, C. Liu, L. Zheng, M. Su, X. Wu, F. Yang, C. Wu, and P. Yang. 2006. Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of Spinach. Biol. Trace Elem. Res. 111:239–253. doi: 10.1385/BTER:111:1:239.
  • Gechev, T.S., and J. Hille. 2005. Hydrogen peroxide as a signal controlling plant programmed cell death. J. Cell Biol. 168:17–20. doi: 10.1083/jcb.200409170.
  • Gholizadeh, A., M. Kumar, A. Balasubramanyam, S. Sharma, S. Narval, M.I. Lodha, and H.C. Kapoor. 2004. Antioxidant activity of antiviral proteins from Celosia cristata L. J. Plant Biochem. Biotech. 13:13–18. doi: 10.1007/BF03263184.
  • Gill, S.S., and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48:909–930. doi: 10.1016/j.plaphy.2010.08.016.
  • Haghi, M., M. Hekmatafshar, M.B. Janipour, S. Seyyedgholizadeh, M.K. Faraz, F. Sayyadifar, and M. Ghaedi. 2012. Antibacterial effect of TiO2 nanoparticles on pathogenic strain of E. coli. Int. J. Adv. Biot. Res 3(3):621–624.
  • Hahlbrock, K., and D. Scheel. 1989. Physiology and molecular biology of phenylpropanoid metabolism. Ann. Rev. Plant Physiol, Plant Mol. Biol. 4:347–369. doi: 10.1146/annurev.pp.40.060189.002023.
  • Halliwell, B., and J.M.C. Gutteridge. 1989. Free radicals in biology and medicine. 2nd ed. Oxford University Press, Oxford, UK.
  • Han, C., Q. Liu, and Y. Yang. 2009. Short-term effects of experimental warming and enhanced ultraviolet-B radiation on photosynthesis and antioxidant defense of Picea asperata seedlings. Plant Growth Regul. 58:153–162. doi: 10.1007/s10725-009-9363-2.
  • Haverson, R.M., ed. 2009. Compendium of Beet diseases and pests. 2nd. American Phytopathological Society, St. Paul, MN.
  • Hayat, S., Q. Hayat, M.N. Alyemeni, A.S. Wani, J. Pichtel, and A. Ahmad. 2012. Role of proline under changing environments: a review. Plant Sig. Beh. 7:1–11.
  • Heath, R.L., and L. Packer. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys 125:189–198.
  • Höller, K., L. Király, A. Künstler, M. Müller, G. Gullner, M. Fattinger, and B. Zechmann. 2010. Enhanced glutathione metabolism is correlated with sulfur-induced resistance in tobacco mosiac virus-infected genetically susceptible Nicotiana tabacum plants. Mol. Plant-Microbe Interact. 23:1448–1459. doi: 10.1094/MPMI-05-10-0117.
  • Hong, F., J. Zhou, C. Liu, F. Yang, C. Wu, L. Zheng, and P. Yang. 2005. Effects of nano-TiO2 on photochemical reaction of chloroplasts of Spinach. Biol. Trace Elem. Res. 105:269–279. doi: 10.1385/BTER:105:1-3:269.
  • Jones, D.H. 1984. Phenylalanine ammonia-lyase: regulation of its induction, and its role in plant development. Phytochemistry. 23:1349–1359. doi: 10.1016/S0031-9422(00)80465-3.
  • Kang, S.M., R. Radhakrishnan, and I.J. Lee. 2015. Bacillus amyloliquefaciens subsp. plantarum GR53, a potent biocontrol agent resists Rhizoctonia disease on Chinese cabbage through hormonal and anti-oxidants regulation. World J. Microbiol. Biotechnol 31(10):1517–1527. doi: 10.1007/s11274-015-1896-0.
  • Kasote, D.M., S.S. Katyare, M.V. Hegde, and H.H. Bae. 2015. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int. J. Biol. Sci. 11(8):982–991. doi: 10.7150/ijbs.12096.
  • Khan, M.I., F. Nazir, M. Asgher, T.S. Per, and N.A. Khan. 2015. Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J. Plant Physiol. 173:9–18. doi: 10.1016/j.jplph.2014.09.011.
  • Kim, D.S., and B.K. Hwang. 2014. An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signaling of the defence response to microbial pathogens. J. Exp. Bot 65(9):2295–2306. doi: 10.1093/jxb/eru109.
  • Laware, S.L., and S. Raskar. 2014. Influence of zinc oxide nanoparticles on growth, flowering and seed productivity in Onion. Int. J. Curr. Microbiol. App. Sci 3(7):874–881.
  • Lois, R., A. Dietrich, K. Hahlbrock, and W. Schulz. 1989. A phenylalanine ammonia-lyase gene from parsley: structure, regulation and identification of elicitor and light responsive cis-acting elements. Embo J 8:1641–1648.
  • MacDonald, M.J., and G.B. D’Cunha. 2007. A modern view of phenylalanine ammonia lyase. Biochem. Cell Biol. 85:273–282. doi: 10.1139/o07-018.
  • Mackinney, G. 1941. Absorption of light by chlorophyll solutions. J. Biol. Chem. 140:315–322.
  • Mauch-Mani, B., and A.J. Slusarenko. 1996. Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell. 8:203–212. doi: 10.1105/tpc.8.2.203.
  • Miralpeix, B., H. Rischer, S.T. Hakkinen, A. Ritala, T. Seppanen-Laakso, K. Oksman-Caldentey, T. Capell, and P. Christou. 2013. Metabolic engineering of plant secondary products: which way forward? Curr Pharm. Des. 19:5622–5639.
  • Mishra, S., A.B. Jha, and R.S. Dubey. 2011. Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma. 248:565–577. doi: 10.1007/s00709-010-0210-0.
  • Muthuraman, P., K. Ramkumar, and D.H. Kim. 2014. Analysis of dose-dependent effect of zinc oxide nanoparticles on the oxidative stress and antioxidant enzyme activity in adipocytes. Appl. Biochem. Biotechnol. 174:2851–2863. doi: 10.1007/s12010-014-1231-5.
  • Nakano, Y., and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880.
  • Neal, A. 2008. What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology. 17:362–371. doi: 10.1007/s10646-008-0217-x.
  • Nedaienia, R., and A. Fassihiani. 2011. Host range and distribution of Pectobacterium betavasculorum, the causal agent of bacterial vascular necrosis and root rot of sugarbeet in Fars province. Iranian J. Plant Pathol. 47:179–185.
  • Noctor, G., and C.H. Foyer. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Biol. 49:249–279. doi: 10.1146/annurev.arplant.49.1.249.
  • Noctor, G., A. Mhamdi, S. Chaouch, Y.I. Han, J. Neukermans, B.E.L.E.N. Marquez-Garcia, B.G. Queval, and C.H. Foyer. 2012. Glutathione in plants: an integrated overview. Plant Cell Environ. 35:454–484. doi: 10.1111/j.1365-3040.2011.02400.x.
  • Norman, D.J., and J. Chen. 2011. Effect of foliar application of titanium dioxide on bacterial blight of Geranium and Xanthomonas leaf spot of Poinsettia. HortScience 46(3):426–428.
  • Nugroho, L.H., M.C. Verberne, and R. Verpoorte. 2002. Activities of enzymes involved in the phenylpropanoid pathway in constitutively salicylic acid-producing tobacco plants. Plant Physiol. Biochem. 40:760–775. doi: 10.1016/S0981-9428(02)01437-7.
  • Okuda, T., Y. Matsuda, A. Yamanaka, and S. Sagisaka. 1991. Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiol 97:1265–1267.
  • Prasad, T.N.V.K.V., P. Sudhakar, Y. Sreenivasulu, P. Latha, V. Munaswamy, K. Raja Reddy, T.S. Sreeprasad, P.R. Sajanlal, and T. Pradeep. 2012. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J. Plant Nutr. 35:905–927. doi: 10.1080/01904167.2012.663443.
  • Queval, G., D. Thominet, H. Vanacker, M. Miginiac-Maslow, B. Gakière, and G. Noctor. 2009. H2O2-activated up-regulation of glutathione in Arabidopsis involves induction of genes encoding enzymes involved in cysteine synthesis in the chloroplast. Mol. Plant Microbe Interact. 2:344–356.r.
  • Radhakrishnan, R., K.B. Shim, B.W. Lee, C.D. Hwang, S.B. Pae, C.H. Park, S.U. Kim, C.K. Lee, and I.Y. Baek. 2013. IAA producing Penicillium sp. NICS01 triggers plant growth and suppresses fusarium induced oxidative stress in sesame (Sesamum indicum L.). J. Microbiol. Biotechnol 23(6):856–863.
  • Ritter, H., and G.E. Schulz. 2004. Structural bases for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia lyase. Plant Cell. 16:3426–3436. doi: 10.1105/tpc.104.025288.
  • Robert-Seilaniantz, A., M. Grant, and J.D.G. Jones. 2011. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu. Rev. Plant Pathol. 49:317–343.
  • Sabir, S., M. Arshad, and S.K. Chaudhari. 2014. Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci. World J. Article ID 925494. doi: 10.1155/2014/925494.
  • Senthil-Kumar, M., and K.S. Mysore. 2012. Ornithine-delta-aminotransferase and prolinedehydrogenase genes play a role in non-host disease resistance by regulating pyrroline-5-carboxylate metabolism-induced hypersensitive response. Plant Cell Environ. 35:1329–1343. doi: 10.1111/j.1365-3040.2012.02492.x.
  • Shadle, G.L., S.V. Wesley, K.L. Korth, F. Chen, C. Lamb, and R.A. Dixon. 2003. Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of L-phenylalanine ammonia-lyase. Phytochemistry 64:153–161.
  • Sharma, P., and R.S. Dubey. 2005. Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul. 46:209–221. doi: 10.1007/s10725-005-0002-2.
  • Sharma, P.D. 2001. Microbiology. Rastogi and Company, Meerut, India.
  • Simonin, M., A. Richaume, J.P. Guyonnet, A. Dubost, J.M.F. Martins, and T. Pommier. 2016. Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers. Sci. Rpts. 6: Article number 33643. doi:10.1038/srep33643
  • Stampoulis, D., S.K. Sinha, and J.C. White. 2009. Assay-dependent phytotoxicity of nanoparticles to plants. Environ. Sci. Technol. 43:9473–9479. doi: 10.1021/es901695c.
  • Sunanda, K., Y. Kikuchi, K. Hashimoto, and A. Fujishima. 1998. Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ. Sci. Technol. 32:726–728. doi: 10.1021/es970860o.
  • Taheri, M., H.A. Qarache, A.A. Qarache, and M. Yoosefi. 2015. The effects of zinc-oxide nanoparticles on growth parameters of corn (SC704). STEM Fellowship J 1(2):17–20. doi: 10.17975/sfj-2015-011.
  • Tanou, G., A. Molassiotis, and G. Diamantidis. 2009. Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Environ. Exper. Bot. 65:270–281. doi: 10.1016/j.envexpbot.2008.09.005.
  • Welch, R.M., M.J. Webb, and J.F. Loneragan. 1982. Zinc in membrane function and its role in phosphorus toxicity. Proceedings 9th International Plant Nutrition Colloquium, Warwick University, London, UK, 22-27 August 1982.
  • Whitney, E.D., and J.E. Duffus. 1986. Compendium of beet diseases and insects. The American Phytpathological Society, St. Paul, MN.
  • Yamamoto, O., M. Komatsu, J. Sawai, and Z. Nakagawa. 2008. Antibacterial activity of ZnO powder with crystallographic orientation. J. Mater. Sci. Mater. Med. 19:1407–1412. doi: 10.1007/s10856-007-3246-8.
  • Zaefyzadeh, M., R.A. Quliyev, S.M. Babayeva, and M.A. Abbasov. 2009. The effect of the interaction between genotypes and drought stress on the superoxide dismutase and chlorophyll content in durum wheat landraces. Turkish J. Biol. 33:1–7.
  • Zechmann, B., G. Zellnig, A. Urbanek-Krajnc, and M. Müller. 2007. Artificial elevation of glutathione affects symptom development in ZYMV-infected Cucurbita pepo L. Plants. Arch. Virol. 152:747–762. doi: 10.1007/s00705-006-0880-2.
  • Zhang, H., and G. Chen. 2009. Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol-gel method. Environ. Sci. Technol. 43:2905–2910.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.