191
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Fertilization integrated with microbial inoculants improves bell pepper production

ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon

References

  • Abd-Alla, M.H. 1994. Phosphatases and the utilization of organic phosphorus by Rhizobium leguminosarum biovar viceae. Lett. Appl. Microbiol. 18(5):294–296. doi: https://doi.org/10.1111/j.1472-765X.1994.tb00873.x.
  • Akyol, T.Y., R. Niwa, H. Hirakawa, H. Maruyama, T. Sato, T. Suzuki, A. Fukunaga, T. Sato, S. Yoshida, K. Tawaraya, et al. 2019. Impact of introduction of arbuscular mycorrhizal fungi on the microbial community in agricultural fields. Microbes Environ. 34(1):23–32. doi: https://doi.org/10.1264/jsme2.ME18109.
  • Alabi, E.O., and O.J. Ayodele. 2019. Effects of phosphorus fertilizer on plant growth, fruit yield and proximate composition of hot pepper (Capsicum annuum, Rodo Variety). Int. J. Plant. Soil Sci. 31(3):1–10. doi: https://doi.org/10.9734/ijpss/2019/v31i330210.
  • Ali, M.M., N.H. Md, M. Sani, F.M.A. Arifunnahar, and M.A.U. Mridha. 2018. Influence of arbuscular mycorrhizal fungi on growth, nutrient uptake and disease suppression of some selected vegetable crops. Azarian J. Agric 5(6):190–196.
  • Arnon, D.I. 1949. Copper enzymes isolated chloroplasts, polyphenol oxidase in Beta vulgaris. Plant Physiol 24(1):1–15. doi: https://doi.org/10.1104/pp.24.1.1.
  • Artursson, V., R.D. Finlay, and J.K. Jansson. 2006. Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ. Microbiol. 8(1):1–10. doi: https://doi.org/10.1111/j.1462-2920.2005.00942.x.
  • Bajaj, K.L., G. Kaur, J. Singh, and J.S. Brar. 1979. Effect of nitrogen and phosphorus levels on nutritive values of Sweet Peppers (Capsicum annum L.) fruits. Plant Food Hum. Nutr. 28(4):287–292. doi: https://doi.org/10.1007/BF01095510.
  • Berger, B., S. Baldermann, and S. Ruppel. 2017. The plant growth-promoting bacterium Kosakonia radicincitans improves fruit yield and quality of Solanum lycopersicum. J. Sci. Food Agric. 97(14):4865–4871. doi: https://doi.org/10.1002/jsfa.8357.
  • Bindraban, P.S., C.O. Dimkpa, and R. Pandey. 2020. Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biol. Fertil. Soils. 56(3):299–317. doi: https://doi.org/10.1007/s00374-019-01430-2.
  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72(1–2):248–254. doi: https://doi.org/10.1016/0003-2697(76)90527-3.
  • Breuillin, F., J. Schramm, M. Hajirezaei, A. Ahkami, P. Favre, U. Druege, B. Hause, M. Bucher, T. Kretzschmar, E. Bossolini, et al. 2010. Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J. 64(6):1002–1017. doi: https://doi.org/10.1111/j.1365-313X.2010.04385.x.
  • Crowder, D.W., and J.P. Reganold. 2015. Financial competitiveness of organic agriculture on a global scale. Proc. Natl. Acad. Sci. 112(24):7611–7616. doi: https://doi.org/10.1073/pnas.1423674112.
  • Douds, D.D., P.E. Pfeffer, and Y. Shachar-Hill. 2000. Carbon partitioning, cost and metabolism of arbuscular mycorrhizas, p. 107–130. In: D.D. Douds and Y. Kapulnik (eds.). Arbuscular mycorrhizas physiology and function. Kluwer Academic Publishers, Dordrecht, The Netherlands.
  • Ezekiel, A.A., and O.A. Ismail. 2005. Phosphorus-use efficiency by pepper (Capsicum frutescens) and Okra (Abelmoschus esculentum) at different phosphorus fertilizer application levels on two tropical soils. J. Appl. Sci. 5(10):1785–1791. doi: https://doi.org/10.3923/jas.2005.1785.1791.
  • Gerdemann, J.W., and T.H. Nicolson. 1963. Spores of mycorrhiza Endogone species extracted from soil by wet sieving and decanting. Trans. Brit. Mycol. Soc 46(2):235–244. doi: https://doi.org/10.1016/S0007-1536(63)80079-0.
  • Giri, B., R. Kapoor, and K.G. Mukerji. 2005. Effect of the arbuscular mycorrhizae Glomus fasciculatum and G. macrocarpum on the growth and nutrient content of Cassia siamea in a semi-arid Indian wasteland soil. New Forests 29(1):63–73. doi: https://doi.org/10.1007/s11056-004-4689-0.
  • Goswami, D., J.N. Thakker, and P.C. Dhandhukia. 2016. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food Agric 2(Article):ID1127500. doi: https://doi.org/10.1080/23311932.2015.1127500.
  • Govindarajulu, M., P.E. Pfeffer, H. Jin, J. Abubaker, D.D. Douds, J.W. Allen, H. Bucking, P.J. Lammers, and Y. Shachar-Hill. 2005. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 455(7043):819–823. doi: https://doi.org/10.1038/nature03610.
  • Grant, C., S. Bittman, M. Montreal, C. Plenchette, and C. Morel. 2005. Soil and fertilizer phosphorus: Effects on plant P supply and mycorrhizal development. Can. J. Plant. Sci. 85(1):3–14. doi: https://doi.org/10.4141/P03-182.
  • Hodge, A., G. Berta, C. Doussan, F. Merchan, and M. Crespi. 2009. Plant root growth, architecture and function. Plant Soil 321:153–187.
  • Jackson, M.L. 1973. Soil chemical analysis. Prentice Hall of India, New Delhi.
  • Kader, A.A. 2008. Flavor quality of fruits and vegetables. J. Sci. Food Agric. 88(11):1863–1868. doi: https://doi.org/10.1002/jsfa.3293.
  • Kalayu, G. 2019. Phosphate solubilizing microorganisms: Promising approach as biofertilizers. Int. J. Agron. 10:1–7. doi: https://doi.org/10.1155/2019/4917256.
  • Kloepper, J.W., R.M. Zablotowick, E.M. Tipping, and R. Lifshitz. 1991. Plant growth promotion mediated by bacterial rhizosphere colonizers, p. 315–326. In: D.L. Kliester and P.G. Cregan (eds.). The rhizosphere and plant growth. Kluwer Academic Press, Dordrecht, The Netherlands.
  • Kobae, Y., Y. Ohmori, C. Saito, K. Yano, R. Ohtomo, and T. Fujiwara. 2016. Phosphate treatment strongly inhibits new arbuscule development but not the maintenance of arbuscule in mycorrhizal rice roots. Plant Physiology 171(1):566–579. doi: https://doi.org/10.1104/pp.16.00127.
  • Lobo, C.B., M.S. Juárez Tomás, E. Viruel, M.A. Ferrero, and M.E. Lucca. 2019. Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies. Microbiol. Res. 219:12–25. doi: https://doi.org/10.1016/j.micres.2018.10.012.
  • Lozano-Fernández, J., L.F. Orozco-Orozco, and L.F. Montoya-Munera. 2018. Effect of two environments and fertilization recommendations on the development and production of bell pepper (cv. Nathalie). Acta Agron. 67(1):101–108.
  • Lucy, M., E. Reed, and B.R. Glick. 2004. Application of free living plant growth-promoting rhizobacteria. Anton. Van Leeuwenhock 86(1):1–25. doi: https://doi.org/10.1023/B:ANTO.0000024903.10757.6e.
  • Malik, A.A., M.A. Chattoo, G. Sheemar, and R. Rashid. 2011. Growth, yield and fruit quality of sweet pepper hybrid SH-SP-5 (Capsicum annuum L.) as affected by integration of inorganic fertilizers and organic manures (FYM). J. Agric. Technol 7(4):1037–1048.
  • Marra, L.M., S.M. de Oliveira-Longatti, C.R.F.S. Soares, F.L. Olivares, and F.M.S. Moreira. 2019. The amount of phosphate solubilization depends on the strain, C-source, organic acids and type of phosphate. Geomicrobiol. J. 36(3):232–242. doi: https://doi.org/10.1080/01490451.2018.1542469.
  • Marschner, H. 1997. Mineral nutrition of higher plants. Academic Press, London.
  • Marschner, P., and K. Baumann. 2003. Changes in bacterial community structure induced by mycorrhizal colonization in split-root maize. Plant Soil 251(2):279–289. doi: https://doi.org/10.1023/A:1023034825871.
  • Menge, J.A., and L.W. Timmer. 1982. Procedure for inoculation of plants with VAM in the laboratory, greenhouse and field, p. 59–68. In: N.C. Schenck (ed.). Methods and principles of mycorrhizal research. American Phytopathology Society, St. Paul, MN.
  • Miransari, M. 2010. Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biology 12:563–569.
  • Nkoa, R., J. Coulombe, Y. Desjardins, J. Owen, and N. Tremblay. 2002. Nitrogen supply phasing increases broccoli (Brassica oleracea L. var. italica) growth and yield. Acta Horticult 571(571):163–170. doi: https://doi.org/10.17660/ActaHortic.2002.571.19.
  • Padmavathi, T., R. Dikshit, and S. Seshagiri. 2015. Effect of Rhizophagus spp. and plant growth-promoting Acinetobacter junii on Solanum lycopersicum and Capsicum annuum. Braz. J. Bot. 38(2):273–280. doi: https://doi.org/10.1007/s40415-015-0144-z.
  • Park, K.H., C.Y. Lee, and H.J. Son. 2009. Mechanism of insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 isolated from ginseng rhizosphere and its plant growth-promoting activities. Lett. Appl. Microbiol. 49(2):222–228. doi: https://doi.org/10.1111/j.1472-765X.2009.02642.x.
  • Pereira, J.A.P., I.J.C. Vieira, M.S.M. Freitas, C.L. Prins, M.A. Martins, and R. Rodrigues. 2016. Effects of arbuscular mycorrhizal fungi on Capsicum spp. J. Agric. Sci. Cambridge 154(5):828–849. doi: https://doi.org/10.1017/S0021859615000714.
  • Phillips, J.M., and D.S. Hayman. 1970. Improved procedures for clearing roots and staining parasitic and VAM fungi for rapid assessment of infection. Trans. Brit. Mycol. Soc. 55(1):158–161. doi: https://doi.org/10.1016/S0007-1536(70)80110-3.
  • Poorter, H., J. Buhler, D. van Dusschoten, J. Climent, and J.A. Postma. 2012. Pot size matters: A meta-analysis of the effects of rooting volume on plant growth. Funct. Plant Biol. 39(11):839–850. doi: https://doi.org/10.1071/FP12049.
  • Prasad, K., A. Aggarwal, K. Yadav, and A. Tanwar. 2012. Impact of different levels of superphosphate using arbuscular mycorrhizal fungi and Pseudomonas fluorescens on Chrysanthemum indicum L. J. Soil Sci. Plt. Nutr 12(3):451–462.
  • Rahman, M.J., and H. Inden. 2012. Enhancement of sweet pepper (Capsicum annuum L.) growth and yield by addition of Nigari and effluent of salt industries, in soilless culture. Aust. J. Crop Sci 6(10):1408–1415.
  • Rai, A., and E. Nabti. 2017. Plant growth-promoting bacteria: Importance in vegetable production, p. 23–48. In: A. Zaidi and M.S. Khan (eds.). Microbial strategies for vegetable production. Springer International Publishing AG, Cham, Switzerland. doi: https://doi.org/10.1007/978-3-319-54401-4.
  • Reyes, L.M., D.C. Sanders, and W.G. Buhler. 2008. Evaluation of slow-release fertilizers on bell pepper. HortTechnology 18(3):393–396. doi: https://doi.org/10.21273/HORTTECH.18.3.393.
  • Richardson, A.E., J.P. Lynch, P.R. Ryan, E. Delhaize, F.A. Smith, S.E. Smith, P.R. Harvey, M.H. Ryan, E.J. Veneklaas, H. Lambers, et al. 2011. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349:121–156.
  • Russo, V.M. 2006. Biological amendment, fertilizers rate, and irrigation frequency for organic bell pepper transplant production. HortScience 41(6):1402–1407. doi: https://doi.org/10.21273/HORTSCI.41.6.1402.
  • Russo, V.M., and P. Perkins-Veazie. 2010. Yield and nutrient content of Bell pepper pods from plants developed from seedlings inoculated, or not, with microorganisms. HortScience 45(3):352–358. doi: https://doi.org/10.21273/HORTSCI.45.3.352.
  • Ruzzi, M., and R. Aroca. 2015. Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci. Horticult. 196:124–134. doi: https://doi.org/10.1016/j.scienta.2015.08.042.
  • Santos, M.S., M.A. Nogueira, and M. Hungria. 2019. Microbial inoculants: Reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express 9(1):1–22. doi: https://doi.org/10.1186/s13568-019-0932-0.
  • Schenck, N.C., and Y. Perez. 1990. Manual for the identification of VA mycorrhizal (VAM) fungi. 3rd ed. University of Florida Press, Gainesville.
  • Siqueira, J.O., O. Saggin Jr., W.W. Flores-Aylas, and P.T.G. Guimaraes. 1998. Arbuscular mycorrhizal inoculation and superphosphate application influence plant development and yield of coffee in Brazil. Mycorrhiza 7(6):293–300. doi: https://doi.org/10.1007/s005720050195.
  • Tabatabai, M.A., and J.M. Bremner. 1969. Use of p-nitrophenol for assay of soil phosphatase activity. Soil Biol. Biochem 1(4):301–307. doi: https://doi.org/10.1016/0038-0717(69)90012-1.
  • Tanwar, A., and A. Aggarwal. 2013. Multifaceted potential of bioinoculants on red bell pepper (F1 hybrid, Indam Mamatha) production. J. Plt. Interact. 9(1):82–91. doi: https://doi.org/10.1080/17429145.2013.765044.
  • Tanwar, A., A. Aggarwal, N. Kadiyan, and A. Gupta. 2013a. Arbuscular mycorrhizal inoculation and rock phosphate application influence plant growth and yield of Capsicum annuum L. J. Soil Sci. Plt. Nutr 13(1):55–66.
  • Tanwar, A., A. Aggarwal, A. Yadav, and V. Parkash. 2013b. Screening and selection of efficient host and sugarcane bagasse as substrate for mass multiplication of Funneliformis mosseae. Biol. Agric. Horticult. 29(2):107–117. doi: https://doi.org/10.1080/01448765.2013.771955.
  • Tawaraya, K., M. Naito, and T. Wagatsuma. 2006. Solubilization of insoluble phosphate by hyphal exudates of arbuscular mycorrhizal fungi. J. Plt Nutr. 29(4):657–665. doi: https://doi.org/10.1080/01904160600564428.
  • Tawaraya, K., M. Ohtaki, Y. Tanimura, and T. Wagatsuma. 2005. Mineralization of organic phosphate by hyphal exudates of arbuscular mycorrhiza, p. 790–791. In: C.J. Li, F.S. Zhang, and A. Dobermann (eds.). Plant nutrition for food security, human health and environmental protection. Tsinghua University, Beijing, China.
  • Whiteside, M.D., G.D.A. Werner, V.E.A. Caldas, A. Van’t Padje, S.E. Dupin, B. Elbers, M. Bakker, G.A.K. Wyatt, M. Klein, M.A. Hink, et al. 2019. Mycorrhizal fungi respond to resource inequality by moving phosphorus from rich to poor patches across networks. Curr. Biol. 29(12):2043–2050. doi: https://doi.org/10.1016/j.cub.2019.04.061.
  • Xiong, Y., J. Yuan, and R. Hu. 2010. The influence of coated urea on yield and quality of vegetable crops and nitrogen balance in calcareous Chao soil. J. Sci. Food Agric 8(3&4):655–659.
  • Yao, L., Z. Wu, Y. Zheng, I. Kaleem, and C. Li. 2010. Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur. J. Soil Biol. 46(1):49–54. doi: https://doi.org/10.1016/j.ejsobi.2009.11.002.
  • Ye, L., X. Zhao, E. Bao, J. Li, Z. Zou, and K. Cao. 2020. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci. Rep. 10(Article ID 177). doi: https://doi.org/10.1038/s41598-019-56954-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.