946
Views
11
CrossRef citations to date
0
Altmetric
Extra View

Prion-like nanofibrils of small molecules (PriSM): A new frontier at the intersection of supramolecular chemistry and cell biology

, &
Pages 110-118 | Received 05 Jan 2015, Accepted 16 Feb 2015, Published online: 21 May 2015

REFERENCES

  • Prusiner SB. Prions. Proc Natl Acad Sci U S A 1998; 95:13363–83; PMID:9811807; http://dx.doi.org/10.1073/pnas.95.23.13363
  • Liebman SW, Chernoff YO. Prions in yeast. Genetics 2012; 191:1041–72; PMID:22879407; http://dx.doi.org/10.1534/genetics.111.137760
  • Crow ET, Li L. Newly identified prions in budding yeast, and their possible functions. Semin Cell Dev Biol 2011; 22:452–9; PMID:21397710; http://dx.doi.org/10.1016/j.semcdb.2011.03.003
  • Bounhar Y, Zhang Y, Goodyer CG, LeBlanc A. Prion protein protects human neurons against Bax-mediated apoptosis. J Biol Chem 2001; 276:39145–9; PMID:11522774; http://dx.doi.org/10.1074/jbc.C100443200
  • Newby GA, Lindquist S. Blessings in disguise: biological benefits of prion-like mechanisms. Trends Cell Biol 2013; 23:251–9; PMID:23485338; http://dx.doi.org/10.1016/j.tcb.2013.01.007
  • Si K, Lindquist S, Kandel ER. In Brief. Nat Rev Neurosci 2004; 5:81–2
  • Hou F, Sun L, Zheng H, Skaug B, Jiang QX, Chen ZJ. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 2011; 146:448–61; PMID:21782231; http://dx.doi.org/10.1016/j.cell.2011.06.041
  • Gilks N, Kedersha N, Ayodele M, Shen L, Stoecklin G, Dember LM, Anderson P. Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell 2004; 15:5383–98; PMID:15371533; http://dx.doi.org/10.1091/mbc.E04-08-0715
  • Kuang Y, Long MJ, Zhou J, Shi J, Gao Y, Xu C, Hedstrom L, Xu B. Prion-like nanofibrils of small molecules (PriSM) selectively inhibit cancer cells by impeding cytoskeleton dynamics. J Biol Chem 2014; 289:29208–18; PMID:25157102; http://dx.doi.org/10.1074/jbc.M114.600288
  • Gao Y, Long MJ, Shi J, Hedstrom L, Xu B. Using supramolecular hydrogels to discover the interactions between proteins and molecular nanofibers of small molecules. Chem Commun (Camb) 2012; 48:8404–6; PMID:22801479; http://dx.doi.org/10.1039/c2cc33631f
  • Kuang Y, Xu B. Disruption of the dynamics of microtubules and selective inhibition of glioblastoma cells by nanofibers of small hydrophobic molecules. Angew Chem Int Ed Engl 2013; 52:6944–8; PMID:23686848; http://dx.doi.org/10.1002/anie.201302658
  • Estroff LA, Hamilton AD. Water gelation by small organic molecules. Chem Rev 2004; 104:1201–18; PMID:15008620; http://dx.doi.org/10.1021/cr0302049
  • Yang Z, Liang G, Xu B. Enzymatic hydrogelation of small molecules. Acc Chem Res 2008; 41:315–26; PMID:18205323; http://dx.doi.org/10.1021/ar7001914
  • Kiyonaka S, Sada K, Yoshimura I, Shinkai S, Kato N, Hamachi I. Semi-wet peptide/protein array using supramolecular hydrogel. Nat Mater 2004; 3:58–64; PMID:14661016; http://dx.doi.org/10.1038/nmat1034
  • Kuang Y, Xu B. Disruption of the dynamics of microtubules and selective inhibition of glioblastoma cells by nanofibers of small hydrophobic molecules. Angew Chem Int Ed Engl 2013; 52:6944–8; PMID:23686848; http://dx.doi.org/10.1002/anie.201302658
  • Kuang Y, Du X, Zhou J, Xu B. Supramolecular nanofibrils inhibit cancer progression in vitro and in vivo. Adv Healthc Mater 2014; 3:1217–21; PMID:24574174; http://dx.doi.org/10.1002/adhm.201300645
  • Fishman WH, Inglis NR, Green S, Anstiss CL, Gosh NK, Reif AE, Rustigian R, Krant MJ, Stolbach LL. Immunology and biochemistry of Regan isoenzyme of alkaline phosphatase in human cancer. Nature 1968; 219:697–9; PMID:5691166; http://dx.doi.org/10.1038/219697a0
  • Fernley HN, Walker PG. Inhibition of alkaline phosphatase by L-phenylalanine. Biochem J 1970; 116:543–4; PMID:5435696
  • Shi J, Du X, Yuan D, Zhou J, Zhou N, Huang Y, Xu B. D-amino acids modulate the cellular response of enzymatic-instructed supramolecular nanofibers of small peptides. Biomacromolecules 2014; 15:3559–68; PMID:25230147; http://dx.doi.org/10.1021/bm5010355
  • Chu H, Pazgier M, Jung G, Nuccio SP, Castillo PA, de Jong MF, Winter MG, Winter SE, Wehkamp J, Shen B, et al. Human α-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science 2012; 337:477–81; PMID:22722251; http://dx.doi.org/10.1126/science.1218831
  • Lo MC, Men H, Branstrom A, Helm J, Yao N, Goldman R, Walker S. A new mechanism of action proposed for ramoplanin. J Am Chem Soc 2000; 122:3540–1; http://dx.doi.org/10.1021/ja000182x
  • Yang L, Harroun TA, Weiss TM, Ding L, Huang HW. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 2001; 81:1475–85; PMID:11509361; http://dx.doi.org/10.1016/S0006-3495(01)75802-X
  • Tanaka A, Fukuoka Y, Morimoto Y, Honjo T, Koda D, Goto M, Maruyama T. Cancer-cell death induced by the intracellular self-assembly of an enzyme-responsive supramolecular gelator. J Am Chem Soc 2015; 137:770–75; PMID:25521540
  • Pires RA. Controlling Cancer Cell Fate using Localized Biocatalytic Self-Assembly of an Aromatic Carbohydrate Amphiphile. J Am Chem Soc 2015; 137:579–79; PMID:25539667
  • Yang ZM, Gu HW, Fu DG, Gao P, Lam JK, Xu B. Enzymatic formation of supramolecular hydrogels. Adv Mater 2004; 16:1440–4; http://dx.doi.org/10.1002/adma.200400340
  • Shi J, Du X, Huang Y, Zhou J, Yuan D, Wu D, Zhang Y, Haburcak R, Epstein IR, Xu B. Ligand-Receptor Interaction Catalyzes the Aggregation of Small Molecules To Induce Cell Necroptosis. J Am Chem Soc 2015; 137:26–9; PMID:25522243; http://dx.doi.org/10.1021/ja5100417
  • Zorn JA, Wille H, Wolan DW, Wells JA. Self-Assembling Small Molecules Form Nanofibrils That Bind Procaspase-3 To Promote Activation. J Am Chem Soc 2011; 133:19630–3; PMID:22066605; http://dx.doi.org/10.1021/ja208350u
  • Julien O, Kampmann M, Bassik MC, Zorn JA, Venditto VJ, Shimbo K, Agard NJ, Shimada K, Rheingold AL, Stockwell BR, et al. Unraveling the mechanism of cell death induced by chemical fibrils. Nat Chem Biol 2014; 10:969–76; PMID:25262416; http://dx.doi.org/10.1038/nchembio.1639
  • Du X, Zhou J, Guvench O, Sangiorgi FO, Li X, Zhou N, Xu B. Supramolecular assemblies of a conjugate of nucleobase, amino acids, and saccharide act as agonists for proliferation of embryonic stem cells and development of zygotes. Bioconjug Chem 2014; 25:1031–5; PMID:24798034; http://dx.doi.org/10.1021/bc500187m
  • Zhao F, Heesters BA, Chiu I, Gao Y, Shi J, Zhou N, Carroll MC, Xu B. L-Rhamnose-containing supramolecular nanofibrils as potential immunosuppressive materials. Org Biomol Chem 2014; 12:6816–9; PMID:25078446; http://dx.doi.org/10.1039/C4OB01362J
  • Xing B, Yu CW, Chow KH, Ho PL, Fu D, Xu B. Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel: a potential candidate for biomaterials. J Am Chem Soc 2002; 124:14846–7; PMID:12475316; http://dx.doi.org/10.1021/ja028539f
  • Newcomb CJ, Sur S, Ortony JH, Lee OS, Matson JB, Boekhoven J, Yu JM, Schatz GC, Stupp SI. Cell death versus cell survival instructed by supramolecular cohesion of nanostructures. Nat Commun 2014; 5:3321; PMID:24531236; http://dx.doi.org/10.1038/ncomms4321
  • Svensson M, Hakansson A, Mossberg AK, Linse S, Svanborg C. Conversion of α-lactalbumin to a protein inducing apoptosis. Proc Natl Acad Sci U S A 2000; 97:4221–6; PMID:10760289; http://dx.doi.org/10.1073/pnas.97.8.4221
  • Chiti F, Dobson CM. Amyloid formation by globular proteins under native conditions. Nat Chem Biol 2009; 5:15–22; PMID:19088715; http://dx.doi.org/10.1038/nchembio.131
  • McGovern SL, Caselli E, Grigorieff N, Shoichet BK. A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J Med Chem 2002; 45:1712–22; PMID:11931626; http://dx.doi.org/10.1021/jm010533y
  • Macdonald JC, Whitesides GM. Solid-State Structures of Hydrogen-Bonded Tapes Based on Cyclic Secondary Diamides. Chem Rev 1994; 94:2383–420; http://dx.doi.org/10.1021/cr00032a007
  • Lehn J-M. From Molecular to Supramolecular Chemistry. Supramolecular Chemistry: Wiley-VCH Verlag GmbH & Co. KGaA 2006:1–9.
  • Sievers SA, Karanicolas J, Chang HW, Zhao A, Jiang L, Zirafi O, Stevens JT, Munch J, Baker D, Eisenberg D. Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature 2011; 475:96–100; PMID:21677644; http://dx.doi.org/10.1038/nature10154
  • Liang C, Ni R, Smith JE, Childers WS, Mehta AK, Lynn DG. Kinetic intermediates in amyloid assembly. J Am Chem Soc 2014; 136:15146–9; PMID:25313920; http://dx.doi.org/10.1021/ja508621b
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100:57–70; PMID:10647931; http://dx.doi.org/10.1016/S0092-8674(00)81683-9
  • Cooper MA, Shlaes D. Fix the antibiotics pipeline. Nature 2011; 472:32; PMID:21475175; http://dx.doi.org/10.1038/472032a
  • Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei J, et al. Cell-free Formation of RNA Granules: Low Complexity Sequence Domains Form Dynamic Fibers within Hydrogels. Cell 2012; 149:753–67; PMID:22579281; http://dx.doi.org/10.1016/j.cell.2012.04.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.