1,788
Views
29
CrossRef citations to date
0
Altmetric
Research Paper

The ribosome-associated complex antagonizes prion formation in yeast

, , , , &
Pages 144-164 | Received 24 Sep 2014, Accepted 16 Feb 2015, Published online: 21 May 2015

REFERENCES

  • Poggiolini I, Saverioni D, Parchi P. Prion protein misfolding, strains, and neurotoxicity: an update from studies on mammalian prions. Int J Cell Biol 2013; 2013:e910314; PMID:24454379; http://dx.doi.org/10.1155/2013/910314
  • Crow ET, Li L. Newly identified prions in budding yeast, and their possible functions. Semin Cell Dev Biol 2011; 22:452–9; PMID:21397710; http://dx.doi.org/10.1016/j.semcdb.2011.03.003
  • Wickner RB, Edskes HK, Bateman D, Kelly AC, Gorkovskiy A. The yeast prions [PSI+] and [URE3] are molecular degenerative diseases. Prion 2011; 5:258–62; PMID:22052353; http://dx.doi.org/10.4161/pri.17748
  • Wickner RB, Edskes HK, Kryndushkin D, McGlinchey R, Bateman D, Kelly A. Prion diseases of yeast: amyloid structure and biology. Semin Cell Dev Biol 2011; 22:469–75; PMID:21345375; http://dx.doi.org/10.1016/j.semcdb.2011.02.021
  • McGlinchey RP, Kryndushkin D, Wickner RB. Suicidal [PSI+] is a lethal yeast prion. Proc Natl Acad Sci U S A 2011; 108:5337–41; PMID:21402947; http://dx.doi.org/10.1073/pnas.1102762108
  • Bateman DA, Wickner RB. [PSI+] Prion transmission barriers protect saccharomyces cerevisiae from infection: intraspecies “species barriers.” Genetics 2012; 190:569–79; PMID:22095075; http://dx.doi.org/10.1534/genetics.111.136655
  • Alberti S, Halfmann R, King O, Kapila A, Lindquist S. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 2009; 137:146–58; PMID:19345193; http://dx.doi.org/10.1016/j.cell.2009.02.044
  • Halfmann R, Jarosz DF, Jones SK, Chang A, Lancaster AK, Lindquist S. Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature 2012; 482:363–8; PMID:22337056; http://dx.doi.org/10.1038/nature10875
  • Wickner RB. ; [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 1994; 264:566–9; PMID:7909170; http://dx.doi.org/10.1126/science.7909170
  • Patino MM, Liu JJ, Glover JR, Lindquist S. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 1996; 273:622–6; PMID:8662547; http://dx.doi.org/10.1126/science.273.5275.622
  • Sparrer HE, Santoso A, Szoka FC, Weissman JS. Evidence for the prion hypothesis: induction of the yeast [PSI+] factor by in vitro-converted sup35 protein. Science 2000; 289:595–9; PMID:10915616; http://dx.doi.org/10.1126/science.289.5479.595
  • True HL, Lindquist SL. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 2000; 407:477–83; PMID:11028992; http://dx.doi.org/10.1038/35035005
  • True HL, Berlin I, Lindquist SL. Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature 2004; 431:184–7; PMID:15311209; http://dx.doi.org/10.1038/nature02885
  • Suzuki G, Shimazu N, Tanaka M. A yeast prion, mod5, promotes acquired drug resistance and cell survival under environmental stress. Science 2012; 336:355–9; PMID:22517861; http://dx.doi.org/10.1126/science.1219491
  • Rogoza T, Goginashvili A, Rodionova S, Ivanov M, Viktorovskaya O, Rubel A, Volkov K, Mironova L. Non-mendelian determinant ; [ISP+] in yeast is a nuclear-residing prion form of the global transcriptional regulator Sfp1. Proc Natl Acad Sci 2010; 107:10573–7; PMID:20498075; http://dx.doi.org/10.1073/pnas.1005949107
  • Tyedmers J, Madariaga ML, Lindquist S. Prion switching in response to environmental stress. PLoS Biol 2008; 6:e294; PMID:19067491; http://dx.doi.org/10.1371/journal.pbio.0060294
  • Sideri TC, Koloteva-Levine N, Tuite MF, Grant CM. Methionine oxidation of Sup35 protein induces formation of the [PSI+] prion in a yeast peroxiredoxin mutant. J Biol Chem 2011; 286:38924–31; PMID:21832086; http://dx.doi.org/10.1074/jbc.M111.272419
  • Halfmann R, Lindquist S. Epigenetics in the extreme: prions and the inheritance of environmentally acquired traits. Science 2010; 330:629–32; PMID:21030648; http://dx.doi.org/10.1126/science.1191081
  • Suzuki G, Tanaka M. Active conversion to the prion state as a molecular switch for cellular adaptation to environmental stress. BioEssays 2013; 35:12–6; PMID:23175284; http://dx.doi.org/10.1002/bies.201200121
  • Hines JK, Craig EA. The sensitive ; [SWI+] prion. Prion 2011; 5:164–8; PMID:21811098; http://dx.doi.org/10.4161/pri.5.3.16895
  • Derkatch IL, Bradley ME, Zhou P, Chernoff YO, Liebman SW. Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in saccharomyces cerevisiae. Genetics 1997; 147:507–19; PMID:9335589
  • Derkatch IL, Uptain SM, Outeiro TF, Krishnan R, Lindquist SL, Liebman SW. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro. Proc Natl Acad Sci U S A 2004; 101:12934–9; PMID:15326312; http://dx.doi.org/10.1073/pnas.0404968101
  • Derkatch IL, Bradley ME, Hong JY, Liebman SW. Prions affect the appearance of other prions: the story of [PIN+]. Cell 2001; 106:171–82; PMID:11511345; http://dx.doi.org/10.1016/S0092-8674(01)00427-5
  • Osherovich LZ, Weissman JS. Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI+] prion. Cell 2001; 106:183–94; PMID:11511346; http://dx.doi.org/10.1016/S0092-8674(01)00440-8
  • Sondheimer N, Lindquist S. Rnq1: an epigenetic modifier of protein function in yeast. Mol Cell 2000; 5:163–72; PMID:10678178; http://dx.doi.org/10.1016/S1097-2765(00)80412-8
  • Chernova TA, Romanyuk AV, Karpova TS, Shanks JR, Ali M, Moffatt N, Howie RL, O'Dell A, McNally JG, Liebman SW, et al. Prion induction by the short-lived, stress-induced protein Lsb2 is regulated by ubiquitination and association with the actin cytoskeleton. Mol Cell 2011; 43:242–52; PMID:21777813; http://dx.doi.org/10.1016/j.molcel.2011.07.001
  • Satpute-Krishnan P, Serio TR. Prion protein remodelling confers an immediate phenotypic switch. Nature 2005; 437:262–5; PMID:16148935; http://dx.doi.org/10.1038/nature03981
  • Deuerling E, Patzelt H, Vorderwülbecke S, Rauch T, Kramer G, Schaffitzel E, Mogk A, Schulze-Specking A, Langen H, Bukau B. Trigger factor and DnaK possess overlapping substrate pools and binding specificities. Mol Microbiol 2003; 47:1317–28; PMID:12603737; http://dx.doi.org/10.1046/j.1365-2958.2003.03370.x
  • Mayer MP, Bukau B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 2005; 62:670–84; PMID:15770419; http://dx.doi.org/10.1007/s00018-004-4464-6
  • Willmund F, del Alamo M, Pechmann S, Chen T, Albanèse V, Dammer EB, Peng J, Frydman J. The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis. Cell 2013; 152:196–209; PMID:23332755; http://dx.doi.org/10.1016/j.cell.2012.12.001
  • Pech M, Spreter T, Beckmann R, Beatrix B. Dual binding mode of the nascent polypeptide-associated complex reveals a novel universal adapter site on the ribosome. J Biol Chem 2010; 285:19679–87; PMID:20410297; http://dx.doi.org/10.1074/jbc.M109.092536
  • Wegrzyn RD, Deuerling E. Molecular guardians for newborn proteins: ribosome-associated chaperones and their role in protein folding. Cell Mol Life Sci CMLS 2005; 62:2727–38; PMID:16231086; http://dx.doi.org/10.1007/s00018-005-5292-z
  • Yogev O, Karniely S, Pines O. Translation-coupled translocation of yeast fumarase into mitochondria in vivo. J Biol Chem 2007; 282:29222–9; PMID:17666392; http://dx.doi.org/10.1074/jbc.M704201200
  • Zhang Y, Berndt U, Gölz H, Tais A, Oellerer S, Wölfle T, Fitzke E, Rospert S. NAC functions as a modulator of SRP during the early steps of protein targeting to the endoplasmic reticulum. Mol Biol Cell 2012; 23:3027–40; PMID:22740632; http://dx.doi.org/10.1091/mbc.E12-02-0112
  • Gautschi M, Lilie H, Fünfschilling U, Mun A, Ross S, Lithgow T, Rücknagel P, Rospert S. RAC, a stable ribosome-associated complex in yeast formed by the DnaK-DnaJ homologs Ssz1p and zuotin. Proc Natl Acad Sci U S A 2001; 98:3762–7; PMID:11274393; http://dx.doi.org/10.1073/pnas.071057198
  • Yan W, Schilke B, Pfund C, Walter W, Kim S, Craig EA. Zuotin, a ribosome-associated DnaJ molecular chaperone. EMBO J 1998; 17:4809–17; PMID:9707440; http://dx.doi.org/10.1093/emboj/17.16.4809
  • Leidig C, Bange G, Kopp J, Amlacher S, Aravind A, Wickles S, Witte G, Hurt E, Beckmann R, Sinning I. Structural characterization of a eukaryotic chaperone–the ribosome-associated complex. Nat Struct Mol Biol 2013; 20:23+; PMID:23202586; http://dx.doi.org/10.1038/nsmb.2447
  • Chernoff YO, Newnam GP, Kumar J, Allen K, Zink AD. Evidence for a protein mutator in yeast: role of the Hsp70-related chaperone ssb in formation, stability, and toxicity of the [PSI] prion. Mol Cell Biol 1999; 19:8103–12; PMID:10567536
  • Lancaster AK, Bardill JP, True HL, Masel J. The spontaneous appearance rate of the yeast prion [PSI+] and its implications for the evolution of the evolvability properties of the [PSI+] system. Genetics 2010; 184:393–400; PMID:19917766; http://dx.doi.org/10.1534/genetics.109.110213
  • Manogaran AL, Kirkland KT, Liebman SW. An engineered nonsense URA3 allele provides a versatile system to detect the presence, absence and appearance of the [PSI+] prion in saccharomyces cerevisiae. Yeast Chichester Engl 2006; 23:141–7; PMID:16491470; http://dx.doi.org/10.1002/yea.1341
  • Shaver AC, Sniegowski PD. Spontaneously Arising mutL Mutators in Evolving Escherichia coli Populations Are the Result of Changes in Repeat Length. J Bacteriol 2003; 185:6076–82; PMID:14526019; http://dx.doi.org/10.1128/JB.185.20.6076-6082.2003
  • Huh W-K, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O'Shea EK. Global analysis of protein localization in budding yeast. Nature 2003; 425:686–91; PMID:14562095; http://dx.doi.org/10.1038/nature02026
  • Soboleski MR, Oaks J, Halford WP. Green fluorescent protein is a quantitative reporter of gene expression in individual eukaryotic cells. FASEB J Off Publ Fed Am Soc Exp Biol 2005; 19:440–2; PMID:15640280
  • Newman JRS, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL, Weissman JS. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 2006; 441:840–6; PMID:16699522; http://dx.doi.org/10.1038/nature04785
  • Ghaemmaghami S, Huh W-K, Bower K, Howson RW, Belle A, Dephoure N, O'Shea EK, Weissman JS. Global analysis of protein expression in yeast. Nature 2003; 425:737–41; PMID:14562106; http://dx.doi.org/10.1038/nature02046
  • Ferreira PC, Ness F, Edwards SR, Cox BS, Tuite MF. The elimination of the yeast [PSI+] prion by guanidine hydrochloride is the result of Hsp104 inactivation. Mol Microbiol 2001; 40:1357–69; PMID:11442834; http://dx.doi.org/10.1046/j.1365-2958.2001.02478.x
  • Jung G, Masison DC. Guanidine hydrochloride inhibits Hsp104 activity in vivo: a possible explanation for its effect in curing yeast prions. Curr Microbiol 2001; 43:7–10; PMID:11375656; http://dx.doi.org/10.1007/s002840010251
  • Jones GW, Song Y, Masison DC. Deletion of the Hsp70 chaperone gene SSB causes hypersensitivity to guanidine toxicity and curing of the [PSI+] prion by increasing guanidine uptake in yeast. Mol Genet Genomics MGG 2003; 269:304–11; PMID:12684878; http://dx.doi.org/10.1007/s00438-003-0838-y
  • Kim S-Y, Craig EA. Broad sensitivity of saccharomyces cerevisiae lacking ribosome-associated chaperone ssb or zuo1 to cations, including aminoglycosides. Eukaryot Cell 2005; 4:82–9; PMID:15643063; http://dx.doi.org/10.1128/EC.4.1.82-89.2005
  • Du Z, Li L. Investigating the interactions of yeast prions - [SWI+], [PSI+] and [PIN+]. Genetics 2014; 197:685–700; PMID:24727082
  • Aron R, Higurashi T, Sahi C, Craig EA. J-protein co-chaperone Sis1 required for generation of ; [RNQ+] seeds necessary for prion propagation. EMBO J 2007; 26:3794–803; PMID:17673909; http://dx.doi.org/10.1038/sj.emboj.7601811
  • Derkatch IL, Bradley ME, Masse SVL, Zadorsky SP, Polozkov GV, Inge‐Vechtomov SG, Liebman SW. Dependence and independence of [PSI+] and [PIN+]: a two‐prion system in yeast? EMBO J 2000; 19:1942–52; PMID:10790361; http://dx.doi.org/10.1093/emboj/19.9.1942
  • Huang P, Gautschi M, Walter W, Rospert S, Craig EA. The Hsp70 Ssz1 modulates the function of the ribosome-associated J-protein Zuo1. Nat Struct Mol Biol 2005; 12:497–504; PMID:15908962; http://dx.doi.org/10.1038/nsmb942
  • Hundley H, Eisenman H, Walter W, Evans T, Hotokezaka Y, Wiedmann M, Craig E. The in vivo function of the ribosome-associated Hsp70, Ssz1, does not require its putative peptide-binding domain. Proc Natl Acad Sci U S A 2002; 99:4203–8; PMID:11929993; http://dx.doi.org/10.1073/pnas.062048399
  • Osherovich LZ, Cox BS, Tuite MF, Weissman JS. Dissection and design of yeast prions. PLoS Biol 2004; 2:e86; PMID:15045026; http://dx.doi.org/10.1371/journal.pbio.0020086
  • Duennwald ML, Jagadish S, Giorgini F, Muchowski PJ, Lindquist S. A network of protein interactions determines polyglutamine toxicity. Proc Natl Acad Sci 2006; 103:11051–6; PMID:16832049; http://dx.doi.org/10.1073/pnas.0604548103
  • Gong H, Romanova NV, Allen KD, Chandramowlishwaran P, Gokhale K, Newnam GP, Mieczkowski P, Sherman MY, Chernoff YO. Polyglutamine toxicity is controlled by prion composition and gene dosage in yeast. PLoS Genet 2012; 8:e1002634; PMID:22536159; http://dx.doi.org/10.1371/journal.pgen.1002634
  • Meriin AB, Zhang X, He X, Newnam GP, Chernoff YO, Sherman MY. Huntingtin toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. J Cell Biol 2002; 157:997–1004; PMID:12058016; http://dx.doi.org/10.1083/jcb.200112104
  • Ter-Avanesyan MD, Kushnirov VV, Dagkesamanskaya AR, Didichenko SA, Chernoff YO, Inge-Vechtomov SG, Smirnov VN. Deletion analysis of the SUP35 gene of the yeast saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol Microbiol 1993; 7:683–92; PMID:8469113; http://dx.doi.org/10.1111/j.1365-2958.1993.tb01159.x
  • Sadlish H, Rampelt H, Shorter J, Wegrzyn RD, Andréasson C, Lindquist S, Bukau B. Hsp110 chaperones regulate prion formation and propagation in S. cerevisiae by two discrete activities. PLoS ONE 2008; 3:e1763; PMID:18335038; http://dx.doi.org/10.1371/journal.pone.0001763
  • Dragovic Z, Broadley SA, Shomura Y, Bracher A, Hartl FU. Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO J 2006; 25:2519–28; PMID:16688212; http://dx.doi.org/10.1038/sj.emboj.7601138
  • Chacinska A, Szczesniak B, Kochneva-Pervukhova NV, Kushnirov VV, Ter-Avanesyan MD, Boguta M. Ssb1 chaperone is a [PSI+] prion-curing factor. Curr Genet 2001; 39:62–7; PMID:11405097; http://dx.doi.org/10.1007/s002940000180
  • Allen Kd, Wegrzyn RD, Chernova TA, Müller S, Newnam GP, Winslett PA, Wittich KB, Wilkinson Kd, Chernoff YO. Hsp70 chaperones as modulators of prion life cycle novel effects of ssa and ssb on the saccharomyces cerevisiae prion [PSI+]. Genetics 2005; 169:1227–42; PMID:15545639; http://dx.doi.org/10.1534/genetics.104.037168
  • Shorter J, Lindquist S. Hsp104, Hsp70 and Hsp40 interplay regulates formation, growth and elimination of sup35 prions. EMBO J 2008; 27:2712–24; PMID:18833196; http://dx.doi.org/10.1038/emboj.2008.194
  • Hallstrom TC, Katzmann DJ, Torres RJ, Sharp WJ, Moye-Rowley WS. Regulation of transcription factor Pdr1p function by an Hsp70 protein in saccharomyces cerevisiae. Mol Cell Biol 1998; 18:1147–55; PMID:9488429
  • Eisenman HC, Craig EA. Activation of pleiotropic drug resistance by the J-protein and Hsp70-related proteins, Zuo1 and Ssz1. Mol Microbiol 2004; 53:335–44; PMID:15225326; http://dx.doi.org/10.1111/j.1365-2958.2004.04134.x
  • Prunuske AJ, Waltner JK, Kuhn P, Gu B, Craig EA. Role for the molecular chaperones Zuo1 and Ssz1 in quorum sensing via activation of the transcription factor Pdr1. Proc Natl Acad Sci 2012; 109:472–7; PMID:22203981; http://dx.doi.org/10.1073/pnas.1119184109
  • Ducett JK, Peterson FC, Hoover LA, Prunuske AJ, Volkman BF, Craig EA. Unfolding of the C-terminal domain of the J-protein Zuo1 releases autoinhibition and activates Pdr1-dependent transcription. J Mol Biol 2013; 425:19–31; PMID:23036859; http://dx.doi.org/10.1016/j.jmb.2012.09.020
  • Sideri TC, Stojanovski K, Tuite MF, Grant CM. Ribosome-associated peroxiredoxins suppress oxidative stress-induced de novo formation of the [PSI+] prion in yeast. Proc Natl Acad Sci U S A 2010; 107:6394–9; PMID:20308573; http://dx.doi.org/10.1073/pnas.1000347107
  • Vishveshwara N, Bradley ME, Liebman SW. Sequestration of essential proteins causes prion associated toxicity in yeast. Mol Microbiol 2009; 73:1101–14; PMID:19682262; http://dx.doi.org/10.1111/j.1365-2958.2009.06836.x
  • Fuge EK, Braun EL, Werner-Washburne M. Protein synthesis in long-term stationary-phase cultures of saccharomyces cerevisiae. J Bacteriol 1994; 176:5802–13; PMID:8083172
  • Hand SC, Hardewig I. Downregulation of cellular metabolism during environmental stress: mechanisms and implications. Annu Rev Physiol 1996; 58:539–63; PMID:8815808; http://dx.doi.org/10.1146/annurev.ph.58.030196.002543
  • Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA. Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 2001; 12:323–37; PMID:11179418; http://dx.doi.org/10.1091/mbc.12.2.323
  • Allen KD, Chernova TA, Tennant EP, Wilkinson KD, Chernoff YO. Effects of ubiquitin system alterations on the formation and loss of a yeast prion. J Biol Chem 2007; 282:3004–13; PMID:17142456; http://dx.doi.org/10.1074/jbc.M609597200
  • Giaever G, Chu AM, Ni L, Connelly C, Riles L, Véronneau S, Dow S, Lucau-Danila A, Anderson K, André B, et al. Functional profiling of the saccharomyces cerevisiae genome. Nature 2002; 418:387–91; PMID:12140549; http://dx.doi.org/10.1038/nature00935
  • Rosche WA, Foster PL. Determining mutation rates in bacterial populations. Methods San Diego Calif 2000; 20:4–17; PMID:10610800; http://dx.doi.org/10.1006/meth.1999.0901