960
Views
6
CrossRef citations to date
0
Altmetric
Extra Views

Sup35 methionine oxidation is a trigger for de novo [PSI+] prion formation

Pages 257-265 | Received 05 Jun 2015, Accepted 17 Jun 2015, Published online: 18 Aug 2015

REFERENCES

  • Prusiner SB. Biology and genetics of prions causing neurodegeneration. Annu Rev Genet 2013; 47:601-23; PMID:24274755; http://dx.doi.org/10.1146/annurev-genet-110711-155524
  • DeMarco ML, Daggett V. Local environmental effects on the structure of the prion protein. C R Biol 2005; 328:847-62; PMID:16286076; http://dx.doi.org/10.1016/j.crvi.2005.05.001
  • Allen KD, Chernova TA, Tennant EP, Wilkinson KD, Chernoff YO. Effects of ubiquitin system alterations on the formation and loss of a yeast prion. J Biol Chem 2007; 282:3004-13; PMID:17142456; http://dx.doi.org/10.1074/jbc.M609597200
  • Lancaster AK, Bardill JP, True HL, Masel J. The spontaneous appearance rate of the yeast prion [PSI+] and its implications for the evolution of the evolvability properties of the [PSI+] system. Genetics 2010; 184:393-400; PMID:19917766; http://dx.doi.org/10.1534/genetics.109.110213
  • Lund PM, Cox BS. Reversion analysis of [psi-] mutations in Saccharomyces cerevisiae. Genet Res 1981; 37:173-82; PMID:7021322; http://dx.doi.org/10.1017/S0016672300020140
  • Wickner RB. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 1994; 264:566-5699; PMID:7909170; http://dx.doi.org/10.1126/science.7909170
  • Chernoff YO, Derkach IL, Inge-Vechtomov SG. Multicopy SUP35 gene induces de-novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Curr Genet 1993; 24:268-70; PMID:8221937; http://dx.doi.org/10.1007/BF00351802
  • Derkatch IL, Chernoff YO, Kushnirov VV, Inge-Vechtomov SG, Liebman SW. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 1996; 144:1375-86; PMID:8978027
  • Chernova TA, Wilkinson KD, Chernoff YO. Physiological and environmental control of yeast prions. FEMS Microbiol Rev 2014; 38:326-44; PMID:24236638; http://dx.doi.org/10.1111/1574-6976.12053
  • Tyedmers J, Madariaga ML, Lindquist S. Prion switching in response to environmental stress. PLoS Biol 2008; 6:e294; PMID:19067491; http://dx.doi.org/10.1371/journal.pbio.0060294
  • Sideri TC, Stojanovski K, Tuite MF, Grant CM. Ribosome-associated peroxiredoxins suppress oxidative stress-induced de novo formation of the [PSI+] prion in yeast. Proc Natl Acad Sci U S A 2010; 107:6394-9; PMID:20308573; http://dx.doi.org/10.1073/pnas.1000347107
  • Sideri TC, Koloteva-Levine N, Tuite MF, Grant CM. Methionine oxidation of Sup35 protein induces formation of the [PSI+] prion in a yeast peroxiredoxin mutant. J Biol Chem 2011; 286:38924-31; PMID:21832086; http://dx.doi.org/10.1074/jbc.M111.272419
  • Doronina VA, Staniforth GL, Speldewinde SH, Tuite MF, Grant CM. Oxidative stress conditions increase the frequency of de novo formation of the yeast [PSI(+) ] prion. Mol Microbiol 2015; 96:163-74; PMID:25601439; http://dx.doi.org/10.1111/mmi.12930
  • Morano KA, Grant CM, Moye-Rowley WS. The Response to Heat Shock and Oxidative Stress in Saccharomyces cerevisiae. Genetics 2011; 190:1157-95; PMID:22209905; http://dx.doi.org/10.1534/genetics.111.128033
  • Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A. Protein carbonylation in human diseases. Trends Mol Med 2003; 9:169-76; PMID:12727143; http://dx.doi.org/10.1016/S1471-4914(03)00031-5
  • Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 1997; 272:20313-6; PMID:9252331; http://dx.doi.org/10.1074/jbc.272.33.20313
  • Temple MD, Perrone GG, Dawes IW. Complex cellular responses to reactive oxygen species. Trends Cell Biol 2005; 15:319-26; PMID:15953550; http://dx.doi.org/10.1016/j.tcb.2005.04.003
  • Jung G, Masison DC. Guanidine hydrochloride inhibits Hsp104 activity in vivo: a possible explanation for its effect in curing yeast prions. Curr Microbiol 2001; 43:7-10; PMID:11375656; http://dx.doi.org/10.1007/s002840010251
  • Ferreira PC, Ness F, Edwards SR, Cox BS, Tuite MF. The elimination of the yeast [PSI+] prion by guanidine hydrochloride is the result of Hsp104 inactivation. Mol Microbiol 2001; 40:1357-69; PMID:11442834; http://dx.doi.org/10.1046/j.1365-2958.2001.02478.x
  • Iraqui I, Kienda G, Soeur J, Faye G, Baldacci G, Kolodner RD, Huang ME. Peroxiredoxin Tsa1 is the key peroxidase suppressing genome instability and protecting against cell death in Saccharomyces cerevisiae. PLoS Genet 2009; 5:e1000524; PMID:19543365; http://dx.doi.org/10.1371/journal.pgen.1000524
  • Stadtman ER, Levine RL. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 2003; 25:207-18; PMID:14661084; http://dx.doi.org/10.1007/s00726-003-0011-2
  • Stadtman ER J. M, Levine RL. Oxidation of methionine residues of proteins: biological consequences. Antioxid Redox Signal 2003; 5:577-82; PMID:14580313; http://dx.doi.org/10.1089/152308603770310239
  • Oien DB, Moskovitz J. Substrates of the methionine sulfoxide reductase system and their physiological relevance. Curr Top Dev Biol 2008; 80:93-133; PMID:17950373; http://dx.doi.org/10.1016/S0070-2153(07)80003-2
  • Oien DB, Canello T, Gabizon R, Gasset M, Lundquist BL, Burns JM, Moskovitz J. Detection of oxidized methionine in selected proteins, cellular extracts and blood serums by novel anti-methionine sulfoxide antibodies. Arch Biochem Biophys 2009; 485:35-40; PMID:19388147; http://dx.doi.org/10.1016/j.abb.2009.01.020
  • Stadtman ER, Van Remmen H, Richardson A, Wehr NB, Levine RL. Methionine oxidation and aging. Biochim Biophys Acta 2005; 1703:135-40; PMID:15680221; http://dx.doi.org/10.1016/j.bbapap.2004.08.010
  • Tessier PM, Lindquist S. Unraveling infectious structures, strain variants and species barriers for the yeast prion [PSI+]. Nat Struct Mol Biol 2009; 16:598-605; PMID:19491937; http://dx.doi.org/10.1038/nsmb.1617
  • Helsen CW, Glover JR. Insight into molecular basis of curing of [PSI+] prion by overexpression of 104-kDa heat shock protein (Hsp104). J Biol Chem 2012; 287:542-56; PMID:22081611; http://dx.doi.org/10.1074/jbc.M111.302869
  • Derkatch IL, Bradley ME, Masse SV, Zadorsky SP, Polozkov GV, Inge-Vechtomov SG, Liebman SW. Dependence and independence of [PSI(+)] and [PIN(+)]: a two-prion system in yeast? EMBO J 2002; 19:1942-52; http://dx.doi.org/10.1093/emboj/19.9.1942
  • Derkatch IL, Uptain SM, Outeiro TF, Krishnan R, Lindquist SL, Liebman SW. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro. Proc Natl Acad Sci U S A 2004; 101:12934-9; PMID:15326312; http://dx.doi.org/10.1073/pnas.0404968101
  • Tyedmers J, Treusch S, Dong J, McCaffery JM, Bevis B, Lindquist S. Prion induction involves an ancient system for the sequestration of aggregated proteins and heritable changes in prion fragmentation. Proc Natl Acad Sci U S A 2010; 107:8633-8; PMID:20421488; http://dx.doi.org/10.1073/pnas.1003895107
  • Kaganovich D, Kopito R, Frydman J. Misfolded proteins partition between two distinct quality control compartments. Nature 2008; 454:1088-95; PMID:18756251; http://dx.doi.org/10.1038/nature07195
  • Arslan F, Hong JY, Kanneganti V, Park SK, Liebman SW. Heterologous aggregates promote de novo prion appearance via more than one mechanism. PLoS Genet 2015; 11:e1004814; PMID:25568955; http://dx.doi.org/10.1371/journal.pgen.1004814
  • Le DT, Lee BC, Marino SM, Zhang Y, Fomenko DE, Kaya A E. H, Kwak GH, Koc A, Kim HY, et al. Functional analysis of free methionine-R-sulfoxide reductase from Saccharomyces cerevisiae. J Biol Chem 2009; 284:4354-64; PMID:19049972; http://dx.doi.org/10.1074/jbc.M805891200
  • Trotter EW, Rand JD, Vickerstaff J, Grant CM. The yeast Tsa1 peroxiredoxin is a ribosome-associated antioxidant. Biochem J 2008; 412:73-80; PMID:18271751; http://dx.doi.org/10.1042/BJ20071634
  • Stahl N, Baldwin MA, Teplow DB, Hood L, Gibson BW, Burlingame AL, Prusiner SB. Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry 1993; 32:1991-2002; PMID:8448158; http://dx.doi.org/10.1021/bi00059a016
  • Requena JR, Dimitrova MN, Legname G, Teijeira S, Prusiner SB, Levine RL. Oxidation of methionine residues in the prion protein by hydrogen peroxide. Arch Biochem Biophys 2004; 432:188-95; PMID:15542057; http://dx.doi.org/10.1016/j.abb.2004.09.012
  • Breydo L, Bocharova OV, Makarava N, Salnikov VV, Anderson M, Baskakov IV. Methionine oxidation interferes with conversion of the prion protein into the fibrillar proteinase K-resistant conformation. Biochemistry 2005; 44:15534-43; PMID:16300402; http://dx.doi.org/10.1021/bi051369+
  • Canello T, Engelstein R, Moshel O, Xanthopoulos K, Juanes ME, Langeveld J, Sklaviadis T, Gasset M, Gabizon R. Methionine sulfoxides on PrPSc: a prion-specific covalent signature. Biochemistry 2008; 47:8866-73; PMID:18680312; http://dx.doi.org/10.1021/bi800801f
  • Silva CJ, Onisko BC, Dynin I, Erickson ML, Vensel WH, Requena JR, Antaki EM, Carter JM. Assessing the role of oxidized methionine at position 213 in the formation of prions in hamsters. Biochemistry 2010; 49:1854-61; PMID:20121218; http://dx.doi.org/10.1021/bi901850n
  • Wolschner C, Giese A, Kretzschmar HA, Huber R, Moroder L, Budisa N. Design of anti- and pro-aggregation variants to assess the effects of methionine oxidation in human prion protein. Proc Natl Acad Sci U S A 2009; 106:7756-61; PMID:19416900; http://dx.doi.org/10.1073/pnas.0902688106
  • Younan ND, Nadal RC, Davies P, Brown DR, Viles JH. Methionine oxidation perturbs the structural core of the prion protein and suggests a generic misfolding pathway. J Biol Chem 2012; 287:28263-75; PMID:22654104; http://dx.doi.org/10.1074/jbc.M112.354779
  • Colombo G, Meli M, Morra G, Gabizon R, Gasset M. Methionine sulfoxides on prion protein Helix-3 switch on the alpha-fold destabilization required for conversion. PLoS One 2009; 4:e4296; PMID:19172188; http://dx.doi.org/10.1371/journal.pone.0004296
  • Lisa S, Meli M, Cabello G, Gabizon R, Colombo G, Gasset M. The structural intolerance of the PrP alpha-fold for polar substitution of the helix-3 methionines. Cell Mol Life Sci 2010; 67:2825-38; PMID:20454997; http://dx.doi.org/10.1007/s00018-010-0363-1
  • Elmallah MI, Borgmeyer U, Betzel C, Redecke L. Impact of methionine oxidation as an initial event on the pathway of human prion protein conversion. Prion 2013; 7:404-11; PMID:24121542; http://dx.doi.org/10.4161/pri.26745
  • Feng B, Wang Z, Liu T, Jin R, Wang S, Wang W, Xiao G, Zhou Z. Methionine oxidation accelerates the aggregation and enhances the neurotoxicity of the D178N variant of the human prion protein. Biochim Biophys Acta 2014; 1842:2345-56; PMID:25281825; http://dx.doi.org/10.1016/j.bbadis.2014.09.012