1,466
Views
16
CrossRef citations to date
0
Altmetric
Extra Views

Protein aggregates stimulate macropinocytosis facilitating their propagation

Pages 119-126 | Received 18 Dec 2015, Accepted 08 Jan 2016, Published online: 10 Mar 2016

REFERENCES

  • Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathologica 2006; 112(4): p:389-404; PMID:16906426; http://dx.doi.org/10.1007/s00401-006-0127-z
  • Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging 2003; 24(2): p:197-211; PMID:12498954; http://dx.doi.org/10.1016/S0197-4580(02)00065-9
  • Brettschneider J, Del Tredici K, Irwin DJ, Grossman M, Robinson JL, Toledo JB, Fang L, Van Deerlin VM, Ludolph AC, Lee VM, et al. Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD). Acta Neuropathologica 2014; 127(3):423-39
  • Brettschneider J, Del Tredici K, Toledo JB, Robinson JL, Irwin DJ, Grossman M, Suh E, Van Deerlin VM, Wood EM, Baek Y, et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Annals Neurol 2013; 74(1): p:20-38; http://dx.doi.org/10.1002/ana.23937
  • Aguzzi A. Cell biology: Beyond the prion principle. Nature 2009; 459(7249): p:924-5; PMID:19536253; http://dx.doi.org/10.1038/459924a
  • Münch C, O'Brien J, Bertolotti A. Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc Natl Acad Sci U S A 2011; 108(9):3548-53; PMID:21321227; http://dx.doi.org/10.1073/pnas.1017275108
  • Furukawa Y, Kaneko K, Watanabe S, Yamanaka K, Nukina N. Intracellular seeded aggregation of mutant Cu,Zn-superoxide dismutase associated with amyotrophic lateral sclerosis. FEBS Lett 2013; 587(16): p:2500-5; PMID:23831581; http://dx.doi.org/10.1016/j.febslet.2013.06.046
  • Hansen C, Angot E, Bergstrom AL, Steiner JA, Pieri L, Paul G, Outeiro TF, Melki R, Kallunki P, Fog K, et al. α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Invest 2011; 121(2): p:715-25; PMID:21245577; http://dx.doi.org/10.1172/JCI43366
  • Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM, Stieber A, Meaney DF, Trojanowski JQ, Lee VM. Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 2011; 72(1): p:57-71; PMID:21982369; http://dx.doi.org/10.1016/j.neuron.2011.08.033
  • Guo JL, Lee VM. Neurofibrillary tangle-like tau pathology induced by synthetic tau fibrils in primary neurons over-expressing mutant tau. FEBS Lett 2013; 587(6): p:717-23; PMID:23395797; http://dx.doi.org/10.1016/j.febslet.2013.01.051
  • Grad LI, Yerbury JJ, Turner BJ, Guest WC, Pokrishevsky E, O'Neill MA, Yanai A, Silverman JM, Zeineddine R, Corcoran L, et al. Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms. Proc Natl Acad Sci U S A 2014; 111(9): p:3620-5; PMID:24550511; http://dx.doi.org/10.1073/pnas.1312245111
  • Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L, Spencer B, Masliah E, Lee SJ. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein. Proc Natl Acad Sci U S A 2009; 106(31): p:13010-5; PMID:19651612; http://dx.doi.org/10.1073/pnas.0903691106
  • Ren PH, Lauckner JE, Kachirskaia I, Heuser JE, Melki R, Kopito RR. Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat Cell Biol 2009; 11(2): p:219-25; PMID:19151706; http://dx.doi.org/10.1038/ncb1830
  • Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M, et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 2009; 11(7): p:909-13; PMID:19503072; http://dx.doi.org/10.1038/ncb1901
  • Ayers JI, Fromholt S, Koch M, DeBosier A, McMahon B, Xu G, Borchelt DR. Experimental transmissibility of mutant SOD1 motor neuron disease. Acta Neuropathol 2014; 128(6): p:791-803; PMID:25262000; http://dx.doi.org/10.1007/s00401-014-1342-7
  • Mougenot AL, Nicot S, Bencsik A, Morignat E, Verchere J, Lakhdar L, Legastelois S, Baron T. Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol Aging 2012; 33(9): p:2225-8; PMID:21813214; http://dx.doi.org/10.1016/j.neurobiolaging.2011.06.022
  • Ayers JI, Fromholt SE, O'Neal VM, Diamond JH, Borchelt DR. Prion-like propagation of mutant SOD1 misfolding and motor neuron disease spread along neuroanatomical pathways. Acta Neuropathol 2015; 131(1):103-14
  • Holmes BB, DeVos SL, Kfoury N, Li M, Jacks R, Yanamandra K, Ouidja MO, Brodsky FM, Marasa J, Bagchi DP, et al. Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc Natl Acad Sci U S A 2013; 110(33): p:E3138-47; PMID:23898162; http://dx.doi.org/10.1073/pnas.1301440110
  • Sundaramoorthy V, Walker AK, Yerbury J, Soo K, Farg MA, Hoang V, Zeineddine R, Spencer D, Atkin JD. Extracellular wildtype and mutant SOD1 induces ER-Golgi pathology characteristic of amyotrophic lateral sclerosis in neuronal cells. Cell Mol Life Sci, 2013; 70(21): p:4181-45; PMID:23765103; http://dx.doi.org/10.1007/s00018-013-1385-2
  • Zeineddine R, Pundavela JF, Corcoran L, Stewart EM, Do-Ha D, Bax M, Guillemin G, Vine KL, Hatters DM, Ecroyd H, et al. SOD1 protein aggregates stimulate macropinocytosis in neurons to facilitate their propagation. Mol Neurodegener 2015; 10(1): p:57; PMID:26520394; http://dx.doi.org/10.1186/s13024-015-0053-4
  • Lee H, Suk J, Bae E, Lee J, Paik S, Lee S, Assembly-dependent endocytosis and clearance of extracellular alphasynuclein. Int J Biochem Cell Biol 2008; 40(9): p:1835-49; PMID:18291704; http://dx.doi.org/10.1016/j.biocel.2008.01.017
  • Trevino RS, Lauckner JE, Sourigues Y, Pearce MM, Bousset L, Melki R, Kopito RR. Fibrillar structure and charge determine the interaction of polyglutamine protein aggregates with the cell surface. J Biol Chem 2012; 287(35): p:29722-8; PMID:22753412; http://dx.doi.org/10.1074/jbc.M112.372474
  • Frost B, Jacks RL, Diamond MI. Propagation of Tau misfolding from the outside to the inside of a cell. J Biol Chem, 2009; 284: p:12845-52; PMID:19282288; http://dx.doi.org/10.1074/jbc.M808759200
  • Wu JW, Herman M, Liu L, Simoes S, Acker CM, Figueroa H, Steinberg JI, Margittai M, Kayed R, Zurzolo C, Paolo GD, et al. Small misfolded Tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J Biol Chem 2013; 288(3): p:1856-70; PMID:23188818; http://dx.doi.org/10.1074/jbc.M112.394528
  • Koivusalo M, Welch C, Hayashi H, Scott CC, Kim M, Alexander T, Touret N, Hahn KM, Grinstein S. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J Cell Biol 2010; 188(4): p:547-63; PMID:20156964; http://dx.doi.org/10.1083/jcb.200908086
  • Ivanov AI. Pharmacological inhibition of endocytic pathways: is it specific enough to be useful? Methods Mol Biol 2008; 440: p:15-33; PMID:18369934; http://dx.doi.org/10.1007/978-1-59745-178-9_2
  • Mercer J, Helenius A. Gulping rather than sipping: macropinocytosis as a way of virus entry. Curr Opin Microbiol 2012; 15(4): p:490-9; PMID:22749376; http://dx.doi.org/10.1016/j.mib.2012.05.016
  • Meier O, Boucke K, Hammer SV, Keller S, Stidwill RP, Hemmi S, Greber UF. Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. J Cell Biol 2002; 158(6): p:1119-31; PMID:12221069; http://dx.doi.org/10.1083/jcb.200112067
  • Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature 2003; 422(6927): p:37-44; PMID:12621426; http://dx.doi.org/10.1038/nature01451
  • Kalia M, Khasa R, Sharma M, Nain M, Vrati S. Japanese encephalitis virus infects neuronal cells through a clathrin-independent endocytic mechanism. J Virol 2013; 87(1): p:148-62; PMID:23055570; http://dx.doi.org/10.1128/JVI.01399-12
  • Izmailyan R, Hsao JC, Chung CS, Chen CH, Hsu PW, Liao CL, Chang W. Integrin beta1 mediates vaccinia virus entry through activation of PI3K/Akt signaling. J Virol 2012; 86(12): p:6677-87; PMID:22496232; http://dx.doi.org/10.1128/JVI.06860-11
  • Schmid RS, Anton ES. Role of integrins in the development of the cerebral cortex. Cereb Cortex 2003; 13(3): p:219-24; PMID:12571112; http://dx.doi.org/10.1093/cercor/13.3.219
  • Akula SM, Wang FZ, Vieira J, Chandran B. Human herpesvirus 8 interaction with target cells involves heparan sulfate. Virol 2001; 282(2): p:245-55; http://dx.doi.org/10.1006/viro.2000.0851
  • Sanchez EG, Quintas A, Perez-Nunez D, Nogal M, Barroso S, Carrascosa AL, Revilla Y. African swine fever virus uses macropinocytosis to enter host cells. PLoS Pathog 2012; 8(6): p:e1002754; PMID:22719252; http://dx.doi.org/10.1371/journal.ppat.1002754
  • Hahn AS, Kaufmann JK, Wies E, Naschberger E, Panteleev-Ivlev J, Schmidt K, Holzer A, Schmidt M, Chen J, Konig S, et al. The ephrin receptor tyrosine kinase A2 is a cellular receptor for Kaposi's sarcoma-associated herpesvirus. Nat Med 2012; 18(6): p:961-6; PMID:22635007; http://dx.doi.org/10.1038/nm.2805
  • Horonchik L, Tzaban S, Ben-Zaken O, Yedidia Y, Rouvinski A, Papy-Garcia D, Barritault D, Vlodavsky I, Taraboulos A. Heparan sulfate is a cellular receptor for purified infectious prions. J Biol Chem 2005; 280(17): p:17062-7; PMID:15668247; http://dx.doi.org/10.1074/jbc.M500122200
  • Schonberger O, Horonchik L, Gabizon R, Papy-Garcia D, Barritault D, Taraboulos A. Novel heparan mimetics potently inhibit the scrapie prion protein and its endocytosis. Biochem Biophys Res Commun 2003; 312(2): p:473-9; PMID:14637161; http://dx.doi.org/10.1016/j.bbrc.2003.10.150
  • Fu H, Liu B, Frost JL, Hong S, Jin M, Ostaszewski B, Shankar GM, Costantino IM, Carroll MC, Mayadas TN, et al, Complement component C3 and complement receptor type 3 contribute to the phagocytosis and clearance of fibrillar Abeta by microglia. Glia 2012; 60(6): p:993-1003; PMID:22438044; http://dx.doi.org/10.1002/glia.22331
  • Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE. A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation. J Neurosci 2003; 23(7): p:2665-74; PMID:12684452
  • Hook S, Roberts K, Kumita JR, Yerbury JJ. The interplay of protein aggregates, microglia and neuroinflammation in neurodegenerative disease, in Microglia: Physiology, Regulation and Health Implications, Giffard ER, Editor. 2015, Nova Publishers: New York. p:157-204
  • Coraci IS, Husemann J, Berman JW, Hulette C, Dufour JH, Campanella GK, Luster AD, Silverstein SC, El-Khoury JB. CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer's disease brains and can mediate production of reactive oxygen species in response to β-amyloid fibrils. Am J Pathol 2002; 160(1): p:101-12; PMID:11786404; http://dx.doi.org/10.1016/S0002-9440(10)64354-4
  • El Khoury J, Hickman SE, Thomas CA, Cao L, Silverstein SC, Loike JD. Scavenger receptor-mediated adhesion of microglia to β-amyloid fibrils. Nature 1996; 382(6593): p:716-9; PMID:8751442; http://dx.doi.org/10.1038/382716a0
  • Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer's disease. Nature 1996; 382(6593): p:685-91; PMID:8751438; http://dx.doi.org/10.1038/382685a0
  • Deane R, Yan SD, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L, Lin C, Yu J, et al. RAGE mediates amyloid-β peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 2003; 9(7): p:907-913; PMID:12808450; http://dx.doi.org/10.1038/nm890
  • Le Y, Gong W, Tiffany HL, Tumanov A, Nedospasov S, Shen W, Dunlop NM, Gao JL, Murphy PM, Oppenheim JJ, et al. Amyloid (β)42 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. J Neurosci 2001; 21(2): p:RC123; PMID:11160457
  • Malik M, Simpson JF, Parikh I, Wilfred BR, Fardo DW, Nelson PT, Estus S. CD33 Alzheimer's risk-altering polymorphism, CD33 expression, and exon 2 splicing. J Neurosci 2013; 33(33): p:13320-5; PMID:23946390
  • Reed-Geaghan, E.G., J.C. Savage, A.G. Hise, and G.E. Landreth, CD14 and toll-like receptors 2 and 4 are required for fibrillar A{β}-stimulated microglial activation. J Neurosci 2009; 29(38): p:11982-92; PMID:19776284
  • Roberts K, Zeineddine R, Corcoran L, Li W, Campbell IL, Yerbury JJ. Extracellular aggregated Cu/Zn superoxide dismutase activates microglia to give a cytotoxic phenotype. Glia 2013; 61(3): p:409-419; PMID:23281114
  • Zeng Y, Tao N, Chung KN, Heuser JE, Lublin DM. Endocytosis of oxidized low density lipoprotein through scavenger receptor CD36 utilizes a lipid raft pathway that does not require caveolin-1. J Biol Chem 2003; 278(46): p:45931-6; PMID:12947091
  • Van Vactor D, Wall DP, Johnson KG. Heparan sulfate proteoglycans and the emergence of neuronal connectivity. Curr Opin Neurobiol, 2006; 16(1): p:40-51; PMID:16417999
  • Hassid BG, Nair MN, Ducruet AF, Otten ML, Komotar RJ, Pinsky DJ, Schmidt AM, Yan SF, Connolly ES Neuronal RAGE expression modulates severity of injury following transient focal cerebral ischemia. J Clin Neurosci 2009; 16(2): p:302-6; PMID:19071026
  • Glezer I, Bittencourt JC, Rivest S, Neuronal expression of Cd36, Cd44, and Cd83 antigen transcripts maps to distinct and specific murine brain circuits. J Comp Neurol 2009; 517(6): p:906-24; PMID:19844997
  • Palmer A, Klein R. Multiple roles of ephrins in morphogenesis, neuronal networking, and brain function. Genes Dev 2003; 17(12): p:1429-50; PMID:12815065
  • Jurney WM, Gallo G, Letourneau PC, McLoon SC. Rac1-mediated endocytosis during ephrin-A2- and semaphorin 3A-induced growth cone collapse. J Neurosci 2002; 22(14): p:6019-28; PMID:12122063
  • Tom VJ, Steinmetz MP, Miller JH, Doller CM, Silver J. Studies on the development and behavior of the dystrophic growth cone, the hallmark of regeneration failure, in an in vitro model of the glial scar and after spinal cord injury. J  Neurosci 2004 24(29): p:6531-9
  • Kabayama H, Takeuchi M, Taniguchi M, Tokushige N, Kozaki S, Mizutani A, Nakamura T, Mikoshiba K. Syntaxin 1B suppresses macropinocytosis and semaphorin 3A-induced growth cone collapse. J Neurosci 2011; 31(20): p:7357-64; PMID:21593320
  • Kolpak AL, Jiang J, Guo D, Standley C, Bellve K, Fogarty K, Bao ZZ. Negative guidance factor-induced macropinocytosis in the growth cone plays a critical role in repulsive axon turning. J Neurosci 2009; 29(34): p:10488-98; PMID:19710302
  • Zeineddine R, Yerbury JJ. The role of macropinocytosis in the propagation of protein aggregation associated with neurodegenerative diseases. Front Physiol 2015; 6: p:277; PMID:26528186
  • Van Hoecke A, Schoonaert L, Lemmens R, Timmers M, Staats KA, Laird AS, Peeters E, Philips T, Goris A, Dubois B, et al. EPHA4 is a disease modifier of amyotrophic lateral sclerosis in animal models and in humans. Nat Med 2012; 18(9): p:1418-22; PMID:22922411

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.