728
Views
3
CrossRef citations to date
0
Altmetric
Extra Views

Strain conformation controls the specificity of cross-species prion transmission in the yeast model

, &
Pages 269-282 | Received 02 Jun 2016, Accepted 15 Jun 2016, Published online: 26 Aug 2016

REFERENCES

  • Jucker M, Walker LC. Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Annals Neurol 2011; 70:532-40; PMID:22028219; http://dx.doi.org/10.1002/ana.22615
  • Moreno-Gonzalez I, Soto C. Misfolded protein aggregates: mechanisms, structures and potential for disease transmission. Seminars Cell Dev Biol 2011; 22:482-7; PMID:21571086; http://dx.doi.org/10.1016/j.semcdb.2011.04.002
  • Kraus A, Groveman BR, Caughey B. Prions and the potential transmissibility of protein misfolding diseases. Annu Rev Microbiol 2013; 67:543-64; PMID:23808331; http://dx.doi.org/10.1146/annurev-micro-092412-155735
  • Goedert M. Neurodegeneration. Alzheimer's and Parkinson's diseases: The prion concept in relation to assembled Abeta, tau, and α-synuclein. Science 2015; 349:1255555; PMID:26250687; http://dx.doi.org/10.1126/science.1255555
  • Aguzzit A, Lakkaraju AK. Cell biology of prions and prionoids: A status report. Trends Cell Biol 2016; 26:40-51; PMID:26455408; http://dx.doi.org/10.1016/j.tcb.2015.08.007
  • Wisniewski T, Sigurdsson EM. Therapeutic approaches for prion and Alzheimer's diseases. FEBS J 2007; 274:3784-98; PMID:17617224; http://dx.doi.org/10.1111/j.1742-4658.2007.05919.x
  • Rodrigue KM, Kennedy KM, Park DC. Beta-amyloid deposition and the aging brain. Neuropsychol Rev 2009; 19:436-50; PMID:19908146; http://dx.doi.org/10.1007/s11065-009-9118-x
  • Aguzzi A, O'Connor T. Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 2010; 9:237-48; PMID:20190788; http://dx.doi.org/10.1038/nrd3050
  • DeArmond SJ, Prusiner SB. Perspectives on prion biology, prion disease pathogenesis, and pharmacologic approaches to treatment. Clin Lab Med 2003; 23:1-41; PMID:12733423; http://dx.doi.org/10.1016/S0272-2712(02)00041-0
  • Weissmann C. The state of the prion. Nat Rev Microbiol 2004; 2:861-71; PMID:15494743; http://dx.doi.org/10.1038/nrmicro1025
  • Moore RA, Vorberg I, Priola SA. Species barriers in prion diseases–brief review. Arch Virol Suppl 2005; (19):187-202; PMID:16355873
  • Aguzzi A, Falsig J. Prion propagation, toxicity and degradation. Nat Neurosci 2012; 15:936-9; PMID:22735515; http://dx.doi.org/10.1038/nn.3120
  • Belay ED, Schonberger LB. The public health impact of prion diseases. Annu Rev Public Health 2005; 26:191-212; PMID:15760286; http://dx.doi.org/10.1146/annurev.publhealth.26.021304.144536
  • Barria MA, Telling GC, Gambetti P, Mastrianni JA, Soto C. Generation of a new form of human PrP(Sc) in vitro by interspecies transmission from cervid prions. J Biol Chem 2011; 286:7490-5; PMID:21209079; http://dx.doi.org/10.1074/jbc.M110.198465
  • Wickner RB, Edskes HK, Shewmaker F, Nakayashiki T, Engel A, McCann L, Kryndushkin D. Yeast prions: evolution of the prion concept. Prion 2007; 1:94-100; PMID:19164928; http://dx.doi.org/10.4161/pri.1.2.4664
  • Liebman SW, Chernoff YO. Prions in yeast. Genetics 2012; 191:1041-72; PMID:22879407; http://dx.doi.org/10.1534/genetics.111.137760
  • Halfmann R, Jarosz DF, Jones SK, Chang A, Lancaster AK, Lindquist S. Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature 2012; 482:363-8; PMID:22337056; http://dx.doi.org/10.1038/nature10875
  • Inge-Vechtomov SG, Zhouravleva GA, Chernoff YO. Biological roles of prion domains. Prion 2007; 1:228-35; PMID:19172114; http://dx.doi.org/10.4161/pri.1.4.5059
  • King CY, Diaz-Avalos R. Protein-only transmission of three yeast prion strains. Nature 2004; 428:319-23; PMID:15029195; http://dx.doi.org/10.1038/nature02391
  • Tanaka M, Chien P, Naber N, Cooke R, Weissman JS. Conformational variations in an infectious protein determine prion strain differences. Nature 2004; 428:323-8; PMID:15029196; http://dx.doi.org/10.1038/nature02392
  • Patel BK, Liebman SW. “Prion-proof” for [PIN+]: infection with in vitro-made amyloid aggregates of Rnq1p-(132-405) induces [PIN+]. J Mol Biol 2007; 365:773-82; PMID:17097676; http://dx.doi.org/10.1016/j.jmb.2006.10.069
  • Brachmann A, Baxa U, Wickner RB. Prion generation in vitro: amyloid of Ure2p is infectious. EMBO J 2005; 24:3082-92; PMID:16096644; http://dx.doi.org/10.1038/sj.emboj.7600772
  • Cox B. Cytoplasmic inheritance - prion-like factors in yeast. Curr Biol 1994; 4:744-8; PMID:7953567; http://dx.doi.org/10.1016/S0960-9822(00)00167-6
  • Chernova TA, Wilkinson KD, Chernoff YO. Physiological and environmental control of yeast prions. FEMS Microbiol Rev 2014; 38:326-44; PMID:24236638; http://dx.doi.org/10.1111/1574-6976.12053
  • Derkatch IL, Bradley ME, Hong JY, Liebman SW. Prions affect the appearance of other prions: the story of [PIN(+)]. Cell 2001; 106:171-82; PMID:11511345; http://dx.doi.org/10.1016/S0092-8674(01)00427-5
  • Tanaka M, Weissman JS. An efficient protein transformation protocol for introducing prions into yeast. Method Enzymol 2006; 412:185-200; http://dx.doi.org/10.1016/S0076-6879(06)12012-1
  • Collinge J, Clarke AR. A general model of prion strains and their pathogenicity. Science 2007; 318:930-6; PMID:17991853; http://dx.doi.org/10.1126/science.1138718
  • Derkatch IL, Chernoff YO, Kushnirov VV, IngeVechtomov SG, Liebman SW. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 1996; 144:1375-86; PMID:8978027
  • Schlumpberger M, Prusiner SB, Herskowitz I. Induction of distinct [URE3] yeast prion strains. Mol Cell Biol 2001; 21:7035-46
  • Bradley ME, Liebman SW. Destabilizing interactions among [PSI+] and [PIN+] yeast prion variants. Genetics 2003; 165:1675-85
  • Morales R, Abid K, Soto C. The prion strain phenomenon: molecular basis and unprecedented features. Biochim Biophys Acta 2007; 1772:681-91; PMID:17254754; http://dx.doi.org/10.1016/j.bbadis.2006.12.006
  • Kushnirov VV, Kryndushkin DS, Boguta M, Smirnov VN, Ter-Avanesyan MD. Chaperones that cure yeast artificial [PSI+] and their prion-specific effects. Curr Biol 2000; 10:1443-6
  • Borchsenius AS, Muller S, Newnam GP, Inge-Vechtomov SG, Chernoff YO. Prion variant maintained only at high levels of the Hsp104 disaggregase. Current Genetics 2006; 49:21-9; PMID:16307272; http://dx.doi.org/10.1007/s00294-005-0035-0
  • Zhou P, Derkatch IL, Uptain SM, Patino MM, Lindquist S, Liebman SW. The yeast non-Mendelian factor [ETA(+)] is a variant of [PSI+], a prion-like form of release factor eRF3. EMBO J 1999; 18:1182-91; PMID:10064585; http://dx.doi.org/10.1093/emboj/18.5.1182
  • Kryndushkin DS, Alexandrov IM, Ter-Avanesyan MD, Kushnirov VV. Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. J Biol Chem 2003; 278:49636-43; PMID:14507919; http://dx.doi.org/10.1074/jbc.M30799-6200
  • Toyama BH, Kelly MJ, Gross JD, Weissman JS. The structural basis of yeast prion strain variants. Nature 2007; 449:233-7; PMID:17767153; http://dx.doi.org/10.1038/nature06108
  • Shkundina IS, Kushnirov VV, Tuite MF, Ter-Avanesyan MD. The role of the N-terminal oligopeptide repeats of the yeast Sup35 prion protein in propagation and transmission of prion variants. Genetics 2006; 172:827-35; PMID:16272413; http://dx.doi.org/10.1534/genetics.105.048660
  • Huang YW, Chang YC, Diaz-Avalos R, King CY. W8, a new Sup35 prion strain, transmits distinctive information with a conserved assembly scheme. Prion 2015; 9:207-27; PMID:26038983; http://dx.doi.org/10.1080/19336896.2015.1039217
  • Chernoff YO. Mutations and natural selection in the protein world. J Mol Biol 2011; 413:525-6; PMID:21854786; http://dx.doi.org/10.1016/j.jmb.2011.08.013
  • Kimberlin RH, Walker CA. Pathogenesis of Scrapie (Strain-263k) in Hamsters infected intracerebrally, intraperitoneally or intraocularly. J General Virol 1986; 67:255-63; PMID:3080549; http://dx.doi.org/10.1099/0022-1317-67-2-255
  • Li JL, Browning S, Mahal SP, Oelschlegel AM, Weissmann C. Darwinian evolution of prions in cell culture. Science 2010; 327:869-72; PMID:20044542; http://dx.doi.org/10.1126/science.1183218
  • Mahal SP, Browning S, Li JL, Suponitsky-Kroyter I, Weissmann C. Transfer of a prion strain to different hosts leads to emergence of strain variants. P Natl Acad Sci USA 2010; 107:22653-8; http://dx.doi.org/10.1073/pnas.1013014108
  • Angers RC, Kang HE, Napier D, Browning S, Seward T, Mathiason C, Balachandran A, McKenzie D, Castilla J, Soto C, et al. Prion strain mutation determined by prion protein conformational compatibility and primary structure. Science 2010; 328:1154-8; PMID:20466881; http://dx.doi.org/10.1126/science.1187107
  • Ghaemmaghami S, Watts JC, Nguyen HO, Hayashi S, DeArmond SJ, Prusiner SB. Conformational transformation and selection of synthetic prion strains. J Mol Biol 2011; 413:527-42; PMID:21839745; http://dx.doi.org/10.1016/j.jmb.2011.07.021
  • Roberts BE, Duennwald ML, Wang H, Chung C, Lopreiato NP, Sweeny EA, Knight MN, Shorter J. A synergistic small-molecule combination directly eradicates diverse prion strain structures. Nat Chem Biol 2009; 5:936-46; PMID:19915541; http://dx.doi.org/10.1038/nchembio.246
  • Bruce KL, Chernoff YO. Sequence specificity and fidelity of prion transmission in yeast. Seminars Cell Dev Biol 2011; 22:444-51; PMID:21439395; http://dx.doi.org/10.1016/j.semcdb.2011.03.005
  • Chernoff YO, Galkin AP, Lewitin E, Chernova TA, Newnam GP, Belenkiy SM. Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Mol Microbiol 2000; 35:865-76; PMID:10692163; http://dx.doi.org/10.1046/j.1365-2958.2000.01761.x
  • Kushnirov VV, Kochneva-Pervukhova N, Chechenova MB, Frolova NS, Ter-Avanesyan MD. Prion properties of the Sup35 protein of yeast Pichia methanolica. EMBO J 2000; 19:324-31; PMID:10654931; http://dx.doi.org/10.1093/emboj/19.3.324
  • Santoso A, Chien P, Osherovich LZ, Weissman JS. Molecular basis of a yeast prion species barrier. Cell 2000; 100:277-88; PMID:10660050; http://dx.doi.org/10.1016/S0092-8674(00)81565-2
  • Chen B, Newnam GP, Chernoff YO. Prion species barrier between the closely related yeast proteins is detected despite coaggregation. Proc Natl Acad Sci USA 2007; 104:2791-6; PMID:17296932; http://dx.doi.org/10.1073/pnas.0611158104
  • Chen B, Bruce KL, Newnam GP, Gyoneva S, Romanyuk AV, Chernoff YO. Genetic and epigenetic control of the efficiency and fidelity of cross-species prion transmission. Mol Microbiol 2010; 76:1483-99; PMID:20444092; http://dx.doi.org/10.1111/j.1365-2958.2010.07177.x
  • Afanasieva EG, Kushnirov VV, Tuite MF, Ter-Avanesyan MD. Molecular basis for transmission barrier and interference between closely related prion proteins in yeast. J Biol Chem 2011; 286:15773-80; PMID:21454674; http://dx.doi.org/10.1074/jbc.M110.183889
  • Wopfner F, Weidenhofer G, Schneider R, von Brunn A, Gilch S, Schwarz TF, Werner T, Schatzl HM. Analysis of 27 mammalian and 9 avian PrPs reveals high conservation of flexible regions of the prion protein. J Mol Biol 1999; 289:1163-78; PMID:10373359; http://dx.doi.org/10.1006/jmbi.1999.2831
  • Sandula J, Vojtkova-Lepsikova A. Immunochemical studies on mannans of the genus Saccharomyces. Group of Saccharomyces sensu stricto species. Folia Microbiologica 1974; 19:94-101; PMID:4215716; http://dx.doi.org/10.1007/BF02872841
  • Bateman DA, Wickner RB. [PSI+] Prion transmission barriers protect saccharomyces cerevisiae from iinfection: intraspecies ‘Species Barriers’. Genetics 2012; 190:569-79; PMID:22095075; http://dx.doi.org/10.1534/genetics.111.136655
  • Horiuchi M, Priola SA, Chabry J, Caughey B. Interactions between heterologous forms of prion protein: binding, inhibition of conversion, and species barriers. Proc Natl Acad Sci USA 2000; 97:5836-41; PMID:10811921; http://dx.doi.org/10.1073/pnas.110523897
  • Osherovich LZ, Weissman JS. Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI(+)] prion. Cell 2001; 106:183-94; PMID:11511346; http://dx.doi.org/10.1016/S0092-8674(01)00440-8
  • Derkatch IL, Uptain SM, Outeiro TF, Krishnan R, Lindquist SL, Liebman SW. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro. Proc Natl Acad Sci USA 2004; 101:12934-9; PMID:15326312; http://dx.doi.org/10.1073/pnas.0404968101
  • Arslan F, Hong JY, Kanneganti V, Park SK, Liebman SW. Heterologous aggregates promote de novo prion Appearance via more than one mechanism. Plos Genet 2015; 11:e1004814; PMID:25568955; http://dx.doi.org/10.1371/journal.pgen.1004814
  • Du ZQ, Li LM. Investigating the interactions of yeast prions: [SWI+], [PSI+], and [PIN+]. Genetics 2014; 197:685-700; PMID:24727082; http://dx.doi.org/10.1534/genetics.114.163402
  • Kaganovich D, Kopito R, Frydman J. Misfolded proteins partition between two distinct quality control compartments. Nature 2008; 454:1088-95; PMID:18756251; http://dx.doi.org/10.1038/nature07195
  • Wang L. Towards revealing the structure of bacterial inclusion bodies. Prion 2009; 3:139-45; PMID:19806034; http://dx.doi.org/10.4161/pri.3.3.9922
  • Gong H, Romanova NV, Allen KD, Chandramowlishwaran P, Gokhale K, Newnam GP, Mieczkowski P, Sherman MY, Chernoff YO. Polyglutamine toxicity is controlled by prion composition and gene dosage in yeast. Plos Genet 2012; 8:223-35; http://dx.doi.org/10.1371/journal.pgen.1002634
  • Rubel AA, Ryzhova TA, Antonets KS, Chernoff YO, Galkin A. Identification of PrP sequences essential for the interaction between the PrP polymers and Aβ peptide in a yeast-based assay. Prion 2013; 7:469-76; PMID:24152606; http://dx.doi.org/10.4161/pri.26867
  • Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. Nature 2009; 457:1128-32; PMID:19242475; http://dx.doi.org/10.1038/nature07761
  • Kudo W, Petersen RB, Lee HG. Cellular prion protein and Alzheimer disease Link to oligomeric amyloid-β and neuronal cell death. Prion 2013; 7:114-6; PMID:23154635; http://dx.doi.org/10.4161/pri.22848
  • Resenberger UK, Harmeier A, Woerner AC, Goodman JL, Muller V, Krishnan R, Vabulas RM, Kretzschmar HA, Lindquist S, Hartl FU, et al. The cellular prion protein mediates neurotoxic signalling of β-sheet-rich conformers independent of prion replication. EMBO J 2011; 30:2057-70; PMID:21441896; http://dx.doi.org/10.1038/emboj.2011.86
  • Chen SG, Yadav SP, Surewicz WK. Interaction between human prion protein and amyloid-β (Abeta) oligomers: Role of N-terminal residues. J Biol Chem 2010; 285:26377-83; PMID:20576610; http://dx.doi.org/10.1074/jbc.M110.145516
  • Sharma A, Bruce KL, Chen BX, Gyoneva S, Behrens SH, Bommarius AS, Chernoff YO. Contributions of the prion protein sequence, strain, and environment to the species barrier. J Biol Chem 2016; 291:1277-88; PMID:26565023; http://dx.doi.org/10.1074/jbc.M115.684100
  • Bateman DA, Wickner RB. The [PSI+] prion exists as a dynamic cloud of variants. PLOS Genet 2013; 9:e1003257; PMID:23382698; http://dx.doi.org/10.1371/journal.pgen.1003257
  • de la Paz ML, Serrano L. Sequence determinants of amyloid fibril formation. Proc Natl Acad Sci USA 2004; 101:87-92; PMID:14691246; http://dx.doi.org/10.1073/pnas.2634884100
  • Pastor MT, Esteras-Chopo A, Serrano L. Hacking the code of amyloid formation: the amyloid stretch hypothesis. Prion 2007; 1:9-14; PMID:19164912; http://dx.doi.org/10.4161/pri.1.1.4100
  • Hill AF, Collinge J. Prion strains and species barriers. Contributions Microbiol 2004; 11:33-49; PMID:15077403; http://dx.doi.org/10.1159/000077061
  • Munishkina LA, Henriques J, Uversky VN, Fink AL. Role of protein-water interactions and electrostatics in α-synuclein fibril formation. Biochemistry-US 2004; 43:3289-300; http://dx.doi.org/10.1021/bi034938r
  • Diaz-Espinoza R, Mukherjee A, Soto C. Kosmotropic anions promote conversion of recombinant prion protein into a PrPSc-like misfolded form. Plos One 2012; 7:e31678; PMID:22347503; http://dx.doi.org/10.1371/journal.pone.0031678
  • Lodderstedt G, Sachs R, Faust J, Bordusa F, Kuhn U, Golbik R, Kerth A, Wahle E, Balbach J, Schwarz E. Hofmeister salts and potential therapeutic compounds accelerate in vitro fibril formation of the N-terminal domain of PABPN1 containing a disease-causing alanine extension. Biochem-US 2008; 47(7):2181-9; http://dx.doi.org/10.1021/bi701322g
  • Ohhashi Y, Ito K, Toyama BH, Weissman JS, Tanaka M. Differences in prion strain conformations result from non-native interactions in a nucleus. Nat Chem Biol 2010; 6:225-30; PMID:20081853; http://dx.doi.org/10.1038/nchembio.306
  • Yeh V, Broering JM, Romanyuk A, Chen B, Chernoff YO, Bommarius AS. The Hofmeister effect on amyloid formation using yeast prion protein. Protein Sci 2010; 19:47-56; PMID:19890987; http://dx.doi.org/10.1002/pro.281
  • Rubin J, Khosravi H, Bruce KL, Lydon ME, Behrens SH, Chernoff YO, Bommarius AS. Ion-specific effects on prion nucleation and strain formation. J Biol Chem 2013; 288:30300-8; PMID:23990463; http://dx.doi.org/10.1074/jbc.M113.467829
  • Prusiner SB. Prions. Proc Natl Acad Sci USA 1998; 95:13363-83; PMID:9811807; http://dx.doi.org/10.1073/pnas.95.23.13363
  • Aguzzi A, Sigurdson C, Heikenwaelder M. Molecular mechanisms of prion pathogenesis. Annu Rev Pathol-Mech 2008; 3:11-40; http://dx.doi.org/10.1146/annurev.pathmechdis.3.121806.154326
  • Collinge J. Prion strain mutation and selection. Science 2010; 328:1111-2; PMID:20508117; http://dx.doi.org/10.1126/science.1190815
  • Baskakov IV. The many shades of prion strain adaptation. Prion 2014; 8:169-72; http://dx.doi.org/10.4161/pri.27836
  • Cohen SI, Vendruscolo M, Dobson CM, Knowles TP. Nucleated polymerization with secondary pathways. II. Determination of self-consistent solutions to growth processes described by non-linear master equations. J Chem Phys 2011; 135:065107; PMID:21842956; http://dx.doi.org/10.1063/1.3608918
  • Vishveshwara N, Liebman SW. Heterologous cross-seeding mimics cross-species prion conversion in a yeast model. BMC Biology 2009; 7:26; PMID:19470166; http://dx.doi.org/10.1186/1741-7007-7-26
  • Bondarev SA, Zhouravleva GA, Belousov MV, Kajava AV. Structure-based view on [PSI+] prion properties. Prion 2015; 9:190-9; PMID:26030475; http://dx.doi.org/10.1080/19336896.2015.1044186
  • Paul KR, Ross ED. Controlling the prion propensity of glutamine/asparagine-rich proteins. Prion 2015; 9:347-54; PMID:26555096; http://dx.doi.org/10.1080/19336896.2015.1111506
  • Vanik DL, Surewicz KA, Surewicz WK. Molecular basis of barriers for interspecies transmissibility of mammalian prions. Mol Cell 2004; 14:139-45; PMID:15068810; http://dx.doi.org/10.1016/S1097-2765(04)00155-8
  • Preis A, Heuer A, Barrio-Garcia C, Hauser A, Eyler DE, Berninghausen O, Green R, Becker T, Beckmann R. Cryoelectron microscopic structures of eukaryotic translation termination complexes containing eRF1-eRF3 or eRF1-ABCE1. Cell Rep 2014; 8:59-65; PMID:25001285; http://dx.doi.org/10.1016/j.celrep.2014.04.058

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.