1,411
Views
7
CrossRef citations to date
0
Altmetric
Extra Views

The double life of the ribosome: When its protein folding activity supports prion propagation

, , , , , , & show all
Pages 89-97 | Received 17 Jan 2017, Accepted 02 Mar 2017, Published online: 12 Apr 2017

REFERENCES

  • Chattopadhyay S, Das B, Bera AK, Dasgupta D, Dasgupta C. Refolding of denatured lactate dehydrogenase by Escherichia coli ribosomes. Biochem J 1994; 300 (Pt 3):717-21; PMID:8010952; http://dx.doi.org/10.1042/bj3000717
  • Das D, Das A, Samanta D, Ghosh J, Dasgupta S, Bhattacharya A, Basu A, Sanyal S, Das Gupta C. Role of the ribosome in protein folding. Biotechnol J 2008; 3:999-1009; PMID:18702035; http://dx.doi.org/10.1002/biot.200800098
  • Pechmann S, Willmund F, Frydman J. The ribosome as a hub for protein quality control. Mol Cell 2013; 49:411-21; PMID:23395271; http://dx.doi.org/10.1016/j.molcel.2013.01.020
  • Melnikov S, Ben-Shem A, Garreau de Loubresse N, Jenner L, Yusupova G, Yusupov M. One core, two shells: bacterial and eukaryotic ribosomes. Nat Struct Mol Biol 2012; 19:560-7; PMID:22664983; http://dx.doi.org/10.1038/nsmb.2313
  • Basu A, Samanta D, Bhattacharya A, Das A, Das D, Dasgupta C. Protein folding following synthesis in vitro and in vivo: association of newly synthesized protein with 50S subunit of E. coli ribosome. Biochem Biophys Res Commun 2008; 366:592-7; http://dx.doi.org/10.1016/j.bbrc.2007.11.142
  • Blondel M, Soubigou F, Evrard J, Nguyen PH, Hasin N, Chedin S, Gillet R, Contesse MA, Friocourt G, Stahl G, et al. Protein Folding Activity of the Ribosome is involved in Yeast Prion Propagation. Sci Rep 2016; 6:32117; PMID:27633137; http://dx.doi.org/10.1038/srep32117
  • Chattopadhyay S, Pal S, Pal D, Sarkar D, Chandra S, Das Gupta C. Protein folding in Escherichia coli: role of 23S ribosomal RNA. Biochim Biophys Acta 1999; 1429:293-8; PMID:9989214; http://dx.doi.org/10.1016/S0167-4838(98)00179-4
  • Tribouillard-Tanvier D, Dos Reis S, Gug F, Voisset C, Beringue V, Sabate R, Kikovska E, Talarek N, Bach S, Huang C, et al. Protein folding activity of ribosomal RNA is a selective target of two unrelated antiprion drugs. PLoS One 2008; 3:e2174; PMID:18478094; http://dx.doi.org/10.1371/journal.pone.0002174
  • Pang Y, Kurella S, Voisset C, Samanta D, Banerjee D, Schabe A, Das Gupta C, Galons H, Blondel M, Sanyal S. The antiprion compound 6-aminophenanthridine inhibits the protein folding activity of the ribosome by direct competition. J Biol Chem 2013; 288:19081-9; PMID:23673663; http://dx.doi.org/10.1074/jbc.M113.466748
  • Samanta D, Mukhopadhyay D, Chowdhury S, Ghosh J, Pal S, Basu A, Bhattacharya A, Das A, Das D, DasGupta C. Protein folding by domain V of Escherichia coli 23S rRNA: specificity of RNA-protein interactions. J Bacteriol 2008; 190:3344-52; PMID:18310328; http://dx.doi.org/10.1128/JB.01800-07
  • Pal S, Chandra S, Chowdhury S, Sarkar D, Ghosh AN, Gupta CD. Complementary role of two fragments of domain V of 23 S ribosomal RNA in protein folding. J Biol Chem 1999; 274:32771-7; PMID:10551837; http://dx.doi.org/10.1074/jbc.274.46.32771
  • Mondal S, Pathak BK, Ray S, Barat C. Impact of P-Site tRNA and antibiotics on ribosome mediated protein folding: studies using the Escherichia coli ribosome. PLoS One 2014; 9:e101293; PMID:25000563; http://dx.doi.org/10.1371/journal.pone.0101293
  • Bach S, Talarek N, Andrieu T, Vierfond JM, Mettey Y, Galons H, Dormont D, Meijer L, Cullin C, Blondel M. Isolation of drugs active against mammalian prions using a yeast-based screening assay. Nat Biotechnol 2003; 21:1075-81; PMID:12910243; http://dx.doi.org/10.1038/nbt855
  • Tribouillard-Tanvier D, Beringue V, Desban N, Gug F, Bach S, Voisset C, Galons H, Laude H, Vilette D, Blondel M. Antihypertensive drug guanabenz is active in vivo against both yeast and mammalian prions. PLoS One 2008; 3:e1981; PMID:18431471; http://dx.doi.org/10.1371/journal.pone.0001981
  • Oumata N, Nguyen PH, Beringue V, Soubigou F, Pang Y, Desban N, Massacrier C, Morel Y, Paturel C, Contesse MA, et al. The toll-like receptor agonist imiquimod is active against prions. PLoS One 2013; 8:e72112; PMID:23977222; http://dx.doi.org/10.1371/journal.pone.0072112
  • Jones GW, Tuite MF. Chaperoning prions: the cellular machinery for propagating an infectious protein? Bioessays 2005; 27:823-32; PMID:16015602; http://dx.doi.org/10.1002/bies.20267
  • Gloge F, Becker AH, Kramer G, Bukau B. Co-translational mechanisms of protein maturation. Curr Opin Struct Biol 2014; 24:24-33; PMID:24721450; http://dx.doi.org/10.1016/j.sbi.2013.11.004
  • Atkins JF, Gesteland RF, Cech TR (eds.). The RNA worlds: From life's origins to diversity in gene regulation. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2011.
  • Jeffares DC, Poole AM, Penny D. Relics from the RNA world. J Mol Evol 1998; 46:18-36; PMID: 9419222; http://dx.doi.org/10.1007/PL00006280
  • Nissen P, Hansen J, Ban N, Moore PB, Steitz TA. The structural basis of ribosome activity in peptide bond synthesis. Science 2000; 289:920-30; PMID: 10937990; http://dx.doi.org/10.1126/science.289.5481.920
  • Krupkin M, Matzov D, Tang H, Metz M, Kalaora R, Belousoff MJ, Zimmerman E, Bashan A, Yonath A. A vestige of a prebiotic bonding machine is functioning within the contemporary ribosome. Philos Trans R Soc Lond B Biol Sci 2011; 366:2972-8; PMID:21930590; http://dx.doi.org/10.1098/rstb.2011.0146
  • Reis SD, Pang Y, Vishnu N, Voisset C, Galons H, Blondel M, Sanyal S. Mode of action of the antiprion drugs 6AP and GA on ribosome assisted protein folding. Biochimie 2011; 93:1047-54; PMID:21396977; http://dx.doi.org/10.1016/j.biochi.2011.03.002
  • Mace K, Gillet R. Origins of tmRNA: the missing link in the birth of protein synthesis? Nucleic Acids Res 2016; 44:8041-51; PMID:27484476; http://dx.doi.org/10.1093/nar/gkw693
  • Harish A, Caetano-Anolles G. Ribosomal history reveals origins of modern protein synthesis. PLoS One 2012; 7:e32776; PMID:22427882; http://dx.doi.org/10.1371/journal.pone.0032776
  • Docter BE, Horowitz S, Gray MJ, Jakob U, Bardwell JC. Do nucleic acids moonlight as molecular chaperones? Nucleic Acids Res 2016; 44:4835-45; PMID:27105849; http://dx.doi.org/10.1093/nar/gkw291
  • Reidy M, Masison DC. Yeast prions help identify and define chaperone interaction networks. Curr Pharm Biotechnol 2014; 15:1008-18; PMID:25373385; http://dx.doi.org/10.2174/1389201015666141103021035
  • Hines JK, Li X, Du Z, Higurashi T, Li L, Craig EA. [SWI], the prion formed by the chromatin remodeling factor Swi1, is highly sensitive to alterations in Hsp70 chaperone system activity. PLoS Genet 2011; 7:e1001309; PMID:21379326; http://dx.doi.org/10.1371/journal.pgen.1001309
  • Schwimmer C, Masison DC. Antagonistic interactions between yeast [PSI(+)] and [URE3] prions and curing of [URE3] by Hsp70 protein chaperone Ssa1p but not by Ssa2p. Mol Cell Biol 2002; 22:3590-8; PMID:11997496; http://dx.doi.org/10.1128/MCB.22.11.3590-3598.2002
  • Chernoff YO, Newnam GP, Kumar J, Allen K, Zink AD. Evidence for a protein mutator in yeast: role of the Hsp70-related chaperone ssb in formation, stability, and toxicity of the [PSI] prion. Mol Cell Biol 1999; 19:8103-12; PMID:10567536; http://dx.doi.org/10.1128/MCB.19.12.8103
  • Kiktev DA, Melomed MM, Lu CD, Newnam GP, Chernoff YO. Feedback control of prion formation and propagation by the ribosome-associated chaperone complex. Mol Microbiol 2015; 96:621-32; PMID:25649498; http://dx.doi.org/10.1111/mmi.12960
  • Linden R, Martins VR, Prado MA, Cammarota M, Izquierdo I, Brentani RR. Physiology of the prion protein. Physiol Rev 2008; 88:673-728; PMID: 18391177; http://dx.doi.org/10.1152/physrev.00007.2007
  • Goold R, Rabbanian S, Sutton L, Andre R, Arora P, Moonga J, Clarke AR, Schiavo G, Jat P, Collinge J, et al. Rapid cell-surface prion protein conversion revealed using a novel cell system. Nat Commun 2011; 2:281; PMID:21505437; http://dx.doi.org/10.1038/ncomms1282
  • Paquet S, Sabuncu E, Delaunay JL, Laude H, Vilette D. Prion infection of epithelial Rov cells is a polarized event. J Virol 2004; 78:7148-52; PMID:15194791; http://dx.doi.org/10.1128/JVI.78.13.7148-7152.2004
  • Godsave SF, Wille H, Kujala P, Latawiec D, DeArmond SJ, Serban A, Prusiner SB, Peters PJ. Cryo-immunogold electron microscopy for prions: toward identification of a conversion site. J Neurosci 2008; 28:12489-99; PMID:19020041; http://dx.doi.org/10.1523/JNEUROSCI.4474-08.2008
  • Marijanovic Z, Caputo A, Campana V, Zurzolo C. Identification of an intracellular site of prion conversion. PLoS Pathog 2009; 5:e1000426; PMID:19424437; http://dx.doi.org/10.1371/journal.ppat.1000426
  • Yim YI, Park BC, Yadavalli R, Zhao X, Eisenberg E, Greene LE. The multivesicular body is the major internal site of prion conversion. J Cell Sci 2015; 128:1434-43; PMID:25663703; http://dx.doi.org/10.1242/jcs.165472
  • Miesbauer M, Rambold AS, Winklhofer KF, Tatzelt J. Targeting of the prion protein to the cytosol: mechanisms and consequences. Curr Issues Mol Biol 2010; 12:109-18; PMID:19767654
  • Hegde RS, Tremblay P, Groth D, DeArmond SJ, Prusiner SB, Lingappa VR. Transmissible and genetic prion diseases share a common pathway of neurodegeneration. Nature 1999; 402:822-6; PMID:10617204; http://dx.doi.org/10.1038/45574
  • Martin-Lanneree S, Hirsch TZ, Hernandez-Rapp J, Halliez S, Vilotte JL, Launay JM, Mouillet-Richard S. PrP(C) from stem cells to cancer. Front Cell Dev Biol 2014; 2:55; PMID:25364760
  • Martins VR, Beraldo FH, Hajj GN, Lopes MH, Lee KS, Prado MA, Linden R. Prion protein: orchestrating neurotrophic activities. Curr Issues Mol Biol 2010; 12:63-86; PMID:19767651
  • Halliez S, Passet B, Martin-Lanneree S, Hernandez-Rapp J, Laude H, Mouillet-Richard S, Vilotte JL, Béringue V. To develop with or without the prion protein. Front Cell Dev Biol 2014; 2:58; PMID:25364763; http://dx.doi.org/10.3389/fcell.2014.00058
  • Bravard A, Auvre F, Fantini D, Bernardino-Sgherri J, Sissoeff L, Daynac M, Xu Z, Etienne O, Dehen C, Comoy E, et al. The prion protein is critical for DNA repair and cell survival after genotoxic stress. Nucleic Acids Res 2015; 43:904-16; PMID:25539913; http://dx.doi.org/10.1093/nar/gku1342
  • Smith HL, Mallucci GR. The unfolded protein response: mechanisms and therapy of neurodegeneration. Brain 2016; 139:2113-21; PMID:27190028; http://dx.doi.org/10.1093/brain/aww101
  • Mays CE, Kim C, Haldiman T, van der Merwe J, Lau A, Yang J, Grams J, Di Bari MA, Nonno R, Telling GC, et al. Prion disease tempo determined by host-dependent substrate reduction. J Clin Invest 2014; 124:847-58; PMID:24430187; http://dx.doi.org/10.1172/JCI72241
  • Brundin P, Melki R, Kopito R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol 2010; 11:301-7; PMID:20308987; http://dx.doi.org/10.1038/nrm2873
  • Frost B, Diamond MI. Prion-like mechanisms in neurodegenerative diseases. Nat Rev Neurosci 2010; 11:155-9; PMID:20029438
  • Goedert M, Clavaguera F, Tolnay M. The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends Neurosci 2010; 33:317-25; PMID:20493564; http://dx.doi.org/10.1016/j.tins.2010.04.003
  • Barbezier N, Chartier A, Bidet Y, Buttstedt A, Voisset C, Galons H, Blondel M, Schwarz E, Simonelig M. Antiprion drugs 6-aminophenanthridine and guanabenz reduce PABPN1 toxicity and aggregation in oculopharyngeal muscular dystrophy. EMBO Mol Med 2011; 3:35-49; PMID:21204267; http://dx.doi.org/10.1002/emmm.201000109

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.