725
Views
10
CrossRef citations to date
0
Altmetric
Extra Views

Prion-specific Hsp40 function: The role of the auxilin homolog Swa2

, &
Pages 174-185 | Received 25 Apr 2017, Accepted 10 May 2017, Published online: 15 Jun 2017

REFERENCES

  • Troisi EM, Rockman ME, Nguyen PP, Oliver EE, Hines JK. Swa2, the yeast homolog of mammalian auxilin, is specifically required for the propagation of the prion variant [URE3-1]. Mol Microbiol 2015; 97:926-41; PMID:26031938; https://doi.org/10.1111/mmi.13076
  • Wickner RB, Edskes HK, Shewmaker F, Nakayashiki T. Prions of fungi: inherited structures and biological roles. Nat Rev Micro 2007; 5:611-8; https://doi.org/10.1038/nrmicro1708
  • Wickner RB, Shewmaker F, Kryndushkin D, Edskes HK. Protein inheritance (prions) based on parallel in-register β-sheet amyloid structures. Bioessays 2008; 30:955-64; PMID:18798523; https://doi.org/10.1002/bies.20821
  • Du Z, Park KW, Yu H, Fan Q, Li L. Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae. Nat Genet 2008; 40:460-5; PMID:18362884; https://doi.org/10.1038/ng.112
  • Uptain SM, Lindquist S. Prions as Protein-Based Genetic Elements. Annu Rev Microbiol 2002; 56:703-41; PMID:12142498; https://doi.org/10.1146/annurev.micro.56.013002.100603
  • Liebman SW, Chernoff YO. Prions in Yeast. Genetics 2012; 191:1041-72; PMID:22879407; https://doi.org/10.1534/genetics.111.137760
  • Cox B, Ness F, Tuite M. Analysis of the generation and segregation of propagons: entities that propagate the [PSI+] prion in yeast. Genetics 2003; 165:23-33; PMID:14504215
  • Tuite MF, Koloteva-Levin N. Propagating Prions in Fungi and Mammals. Mol Cell 2004; 14:541-52; PMID:15175150; https://doi.org/10.1016/j.molcel.2004.05.012
  • Schlieker C, Tews I, Bukau B, Mogk A. Solubilization of aggregated proteins by ClpB/DnaK relies on the continuous extraction of unfolded polypeptides. FEBS Letters 2004; 578:351-6; PMID:15589844; https://doi.org/10.1016/j.febslet.2004.11.051
  • Wickner RB, Shewmaker FP, Bateman DA, Edskes HK, Gorkovskiy A, Dayani Y, Bezsonov EE. Yeast Prions: Structure, biology, and prion-handling systems. Microbiol Mol Biol Rev 2015; 79:1-17; PMID:25631286
  • Satpute-Krishnan P, Langseth SX, Serio TR. Hsp104-dependent remodeling of prion complexes mediates protein-only inheritance. PLoS Biol 2007; 5:e24; PMID:17253904
  • Haslberger T, Bukau B, Mogk A. Towards a unifying mechanism for ClpB/Hsp104-mediated protein disaggregation and prion propagationThis paper is one of a selection of papers published in this special issue entitled 8th International Conference on AAA Proteins and has undergone the Journal's usual peer review process. Biochem Cell Biol 2010; 88:63-75; PMID:20130680
  • Newnam GP, Wegrzyn RD, Lindquist SL, Chernoff YO. Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing. Mol Cell Biol 1999; 19:1325-33; PMID:9891066
  • Jung G, Jones G, Wegrzyn RD, Masison DC. A role for cytosolic hsp70 in yeast [PSI(+)] prion propagation and [PSI(+)] as a cellular stress. Genetics 2000; 156:559-70; PMID:11014806
  • Sondheimer N, Lopez N, Craig EA, Lindquist S. The role of Sis1 in the maintenance of the [RNQ+] prion. EMBO J 2001; 20:2435-42; PMID:11350932
  • Higurashi T, Hines JK, Sahi C, Aron R, Craig EA. Specificity of the J-protein Sis1 in the propagation of 3 yeast prions. Proc Natl Acad Sci 2008; 105:16596-601
  • Hines JK, Li X, Du Z, Higurashi T, Li L, Craig EA. [SWI+], the Prion Formed by the Chromatin Remodeling Factor Swi1, Is Highly Sensitive to Alterations in Hsp70 Chaperone system activity. PLoS Genet 2011; 7:e1001309-16; PMID:21379326
  • Aron R, Higurashi T, Sahi C, Craig EA. J-protein co-chaperone Sis1 required for generation of [RNQ+] seeds necessary for prion propagation. EMBO J 2007; 26:3794-803; PMID:17673909
  • Tipton KA, Verges KJ, Weissman JS. In vivo monitoring of the prion replication cycle reveals a critical role for Sis1 in delivering substrates to Hsp104. Mol Cell 2008; 32:584-91; PMID:19026788; https://doi.org/10.1016/j.molcel.2008.11.003
  • Kumar N, Gaur D, Gupta A, Puri A, Sharma D. Hsp90-Associated Immunophilin Homolog Cpr7 is required for the Mitotic Stability of [URE3] Prion in Saccharomyces cerevisiae. PLoS Genet 2015; 11:e1005567-25; PMID:26473735; https://doi.org/10.1371/journal.pgen.1005567
  • Park KW, Hahn JS, Fan Q, Thiele DJ, Li L. De novo appearance and ‘strain’ formation of yeast prion [PSI+] are regulated by the heat-shock transcription factor. Genetics 2006; 173:35-47; PMID:16452152; https://doi.org/10.1534/genetics.105.054221
  • Reidy M, Masison DC. Sti1 regulation of Hsp70 and Hsp90 is critical for curing of Saccharomyces cerevisiae [PSI+] prions by Hsp104. Mol Cell Biol 2010; 30:3542-52; PMID:20479121; https://doi.org/10.1128/MCB.01292-09
  • Moosavi B, Wongwigkarn J, Tuite MF. Hsp70/Hsp90 co-chaperones are required for efficient Hsp104-mediated elimination of the yeast [PSI+] prion but not for prion propagation. Yeast 2010; 27(3):167-79; PMID:20014008
  • Kiktev DA, Patterson JC, Müller S, Bariar B, Pan T, Chernoff YO. Regulation of chaperone effects on a yeast prion by cochaperone Sgt2. Mol Cell Biol 2012; 32:4960-70; PMID:23045389; https://doi.org/10.1128/MCB.00875-12
  • Cheetham ME, Caplan AJ. Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 1998; 3:28; https://doi.org/10.1379/1466-1268(1998)003<0028:SFAEOD>2.3.CO;2
  • Harris JM, Nguyen PP, Patel MJ, Sporn ZA, Hines JK. Functional Diversification of Hsp40: Distinct J-Protein functional requirements for two prions allow for Chaperone-dependent prion selection. PLoS Genet 2014; 10:e1004510-14; PMID:25058638; https://doi.org/10.1371/journal.pgen.1004510
  • Reidy M, Sharma R, Shastry S, Roberts BL, Albino-Flores I, Wickner S, Masison DC. Hsp40s Specify Functions of Hsp104 and Hsp90 protein Chaperone machines. PLoS Genet 2014; 10:e1004720-22; PMID:25329162; https://doi.org/10.1371/journal.pgen.1004720
  • Stein KC, True HL. Structural variants of yeast prions show conformer-specific requirements for chaperone activity. Mol Microbiol 2014; 93(6):1156-71; PMID:25060529
  • Sporn ZA, Hines JK. Hsp40 function in yeast prion propagation: Amyloid diversity necessitates chaperone functional complexity. Prion 2015; 9:80-9; PMID:25738774; https://doi.org/10.1080/19336896.2015.1020268
  • Hines JK, Higurashi T, Srinivasan M, Craig EA. Influence of prion variant and yeast strain variation on prion-molecular chaperone requirements. Prion 2011; 5:238-44; PMID:22156732; https://doi.org/10.4161/pri.5.4.17818 10.4161/pri.17818
  • Gall WE, Higginbotham MA, Chen C, Ingram MF, Cyr DM, Graham TR. The auxilin-like phosphoprotein Swa2p is required for clathrin function in yeast. Curr Biol 2000; 10:1349-58; PMID:11084334; https://doi.org/10.1016/S0960-9822(00)00771-5
  • Pishvaee B, Costaguta G, Yeung BG, Ryazantsev S, Greener T, Greene LE, Eisenberg E, McCaffery JM, Payne GS. A yeast DNA J protein required for uncoating of clathrin-coated vesicles in vivo. Nat Cell Biol 2000; 2:958-63; PMID:11146663; https://doi.org/10.1038/35046619
  • Holstein SE, Ungewickell H, Ungewickell E. Mechanism of clathrin basket dissociation: separate functions of protein domains of the DnaJ homologue auxilin. J Cell Biol 1996; 135:925-37; PMID:8922377; https://doi.org/10.1083/jcb.135.4.925
  • Aigle M, Lacroute F. Genetical aspects of [URE3], a non-mitochondrial, cytoplasmically inherited mutation in yeast. Mol Gen Genet 1975; 136:327-35; PMID:16095000; https://doi.org/10.1007/BF00341717
  • Bellot EF, Guillemet E, Cullin C. The yeast prion [URE3] can be greatly induced by a functional mutated URE2 allele. EMBO J 2000; 19:3215-22; PMID:10880435; https://doi.org/10.1093/emboj/19.13.3215
  • Wickner RB, Bezsonov E, Bateman DA. Normal levels of the antiprion proteins Btn2 and Cur1 cure most newly formed [URE3] prion variants. Proc Natl Acad Sci U.S.A 2014; 111:E2711-20; PMID:24938787; https://doi.org/10.1073/pnas.1409582111
  • Xiao J, Kim LS, Graham TR. Dissection of Swa2p/auxilin domain requirements for cochaperoning Hsp70 clathrin-uncoating activity in vivo. Mol Biol Cell 2006; 17:3281-90; PMID:16687570; https://doi.org/10.1091/mbc.E06-02-0106
  • Sahi C, Craig EA. Network of general and specialty J protein chaperones of the yeast cytosol. Proc Natl Acad Sci U.S.A 2007; 104:7163-8; PMID:17438278; https://doi.org/10.1073/pnas.0702357104
  • Moriyama H, Edskes HK, Wickner RB. [URE3] Prion Propagation in Saccharomyces cerevisiae: Requirement for Chaperone Hsp104 and curing by overexpressed Chaperone Ydj1p. Mol Cell Biol 2000; 20:8916-22; PMID:11073991; https://doi.org/10.1128/MCB.20.23.8916-8922.2000
  • Kryndushkin D, Wickner RB. Nucleotide exchange factors for Hsp70s are required for [URE3] prion propagation in Saccharomyces cerevisiae. Mol Biol Cell 2007; 18:2149-54; PMID:17392510; https://doi.org/10.1091/mbc.E07-02-0128
  • Chim N, Gall WE, Xiao J, Harris MP, Graham TR, Krezel AM. Solution structure of the ubiquitin-binding domain in Swa2p from Saccharomyces cerevisiae. Proteins 2004; 54:784-93; PMID:14997574; https://doi.org/10.1002/prot.10636
  • Krantz KC, Puchalla J, Thapa R, Kobayashi C, Bisher M, Viehweg J, Carr CM, Rye HS. Clathrin Coat disassembly by the Yeast Hsc70/Ssa1p and Auxilin/Swa2p proteins observed by Single-particle burst analysis spectroscopy. J Biol Chem 2013; 288:26721-30; PMID:23913685; https://doi.org/10.1074/jbc.M113.491753
  • Matta-Camacho E, Kozlov G, Trempe JF, Gehring K. Atypical binding of the Swa2p UBA Domain to Ubiquitin. J Mol Biol 2009; 386:569-77; PMID:18948116; https://doi.org/10.1016/j.jmb.2008.09.086
  • Kampinga HH, Craig EA. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Publishing Group 2010; 11:579-92
  • Martineau CN, Melki R, Kabani M. Swa2p-dependent clathrin dynamics is critical for Flo11p processing and ‘Mat’ formation in the yeast Saccharomyces cerevisiae. FEBS Letters 2010; 584:1149-55; PMID:20138883; https://doi.org/10.1016/j.febslet.2010.02.008
  • Lopez N, Aron R, Craig EA. Specificity of class II Hsp40 Sis1 in maintenance of yeast prion [RNQ+]. Mol Biol Cell 2003; 14:1172-81; PMID:12631732; https://doi.org/10.1091/mbc.E02-09-0593
  • Jiang J, Taylor AB, Prasad K, Ishikawa-Brush Y, Hart PJ, Lafer EM, Sousa R. Structure−function analysis of the auxilin J-domain reveals an extended Hsc70 interaction interface †,‡. Biochemistry 2003; 42(19):5748-53; PMID:12741832; https://doi.org/10.1021/bi034270g
  • Yan W, Craig EA. The glycine-phenylalanine-rich region determines the specificity of the yeast Hsp40 Sis1. Mol Cell Biol 1999; 19:7751-8; PMID:10523664; https://doi.org/10.1128/MCB.19.11.7751
  • Johnson JL, Craig EA. An essential role for the substrate-binding region of Hsp40s in Saccharomyces cerevisiae. J Cell Biol 2001; 152; 851-6; PMID:11266475; https://doi.org/10.1083/jcb.152.4.851
  • Silva JC, Borges JC, Cyr DM, Ramos CH, Torriani IL. Central domain deletions affect the SAXS solution structure and function of Yeast Hsp40 proteins Sis1 and Ydj1. BMC Structural Biol 2011; 11:40; PMID:22011374; https://doi.org/10.1186/1472-6807-11-40
  • Cerveny L, Straskova A, Dankova V, Hartlova A, Ceckova M, Staud F, Stulik J. Tetratricopeptide repeat motifs in the world of bacterial pathogens: role in virulence mechanisms. Infect Immun 2013; 81:629-35; PMID:23264049; https://doi.org/10.1128/IAI.01035-12
  • Zeytuni N, Zarivach R. Structural and functional discussion of the tetra-trico-peptide repeat, a protein interaction module. Structure/Folding Design 2012; 20:397-405
  • Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, Bartunik H, Hartl FU, Moarefi I. Structure of TPR Domain–Peptide complexes. Cell 2000; 101:199-210; PMID:10786835; https://doi.org/10.1016/S0092-8674(00)80830-2
  • Odunuga OO, Hornby JA, Bies C, Zimmermann R, Pugh DJ, Blatch GL. Tetratricopeptide repeat motif-mediated Hsc70-mSTI1 interaction. Molecular characterization of the critical contacts for successful binding and specificity. J Biol Chem 2003; 278:6896-904; PMID:12482845; https://doi.org/10.1074/jbc.M206867200
  • Abbas-Terki T, Donze O, Briand PA, Picard D. Hsp104 interacts with Hsp90 cochaperones in respiring yeast. Mol. Cell Biol 2001; 21:7569-75; PMID:11604493; https://doi.org/10.1128/MCB.21.22.7569-7575.2001
  • Mackay RG, Helsen CW, Tkach JM, Glover JR. The C-terminal Extension of Saccharomyces cerevisiaeHsp104 plays a role in Oligomer assembly †. Biochem 2008; 47:1918-27; PMID:18197703; https://doi.org/10.1021/bi701714s
  • Nicolet CM, Craig EA. Isolation and characterization of STI1, a stress-inducible gene from Saccharomyces cerevisiae. Mol Cell Biol 1989; 9:3638-46; PMID:2674681; https://doi.org/10.1128/MCB.9.9.3638
  • Prodromou C, Panaretou B, Chohan S, Siligardi G, O'Brien R, Ladbury JE, Roe SM, Piper PW, Pearl LH. The ATPase cycle of Hsp90 drives a molecular ‘clamp’ via transient dimerization of the N-terminal domains. EMBO J 2000; 19:4383-92; PMID:10944121; https://doi.org/10.1093/emboj/19.16.4383
  • McLaughlin SH, Ventouras A, Lobbezoo B, Jackson SE. Independent ATPase activity of Hsp90 Subunits creates a flexible assembly platform. J Mol Biol 2004; 344:813-26; PMID:15533447; https://doi.org/10.1016/j.jmb.2004.09.055
  • Lian HY, Jiang Y, Zhang H, Jones GW, Perrett S. The yeast prion protein Ure2: Structure, function and folding. Biochim Et Biophys Acta (BBA) - Proteins Proteomics 2006; 1764:535-45; https://doi.org/10.1016/j.bbapap.2005.11.016
  • Baxa U, Speransky V, Steven AC, Wickner RB. Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein. Proc Natl Acad Sci USA 2002; 99:5253-60; PMID:11959975; https://doi.org/10.1073/pnas.082097899
  • Ripaud L, Maillet L, Cullin C. The mechanisms of [URE3] prion elimination demonstrate that large aggregates of Ure2p are dead‐end products. EMBO J 2003; 22:5251-9; PMID:14517262; https://doi.org/10.1093/emboj/cdg488
  • Hines JK, Craig EA. The sensitive [SWI+] prion. Prion 2011; 5:164-8; PMID:21811098; https://doi.org/10.4161/pri.5.3.16895
  • Crapeau M, Marchal C, Cullin C, Maillet L. The cellular concentration of the yeast Ure2p prion protein affects its propagation as a prion. Mol Biol Cell 2009; 20:2286-96; PMID:19225154; https://doi.org/10.1091/mbc.E08-11-1097