940
Views
5
CrossRef citations to date
0
Altmetric
Extra Views

Manipulating the aggregation activity of human prion-like proteins

, &
Pages 323-331 | Received 24 May 2017, Accepted 10 Jul 2017, Published online: 12 Oct 2017

REFERENCES

  • Liebman SW, Chernoff YO. Prions in yeast. Genetics. 2012; 191:1041-72. doi:10.1534/genetics.111.137760 PMID:22879407
  • King OD, Gitler AD, Shorter J. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res. 2012; 1462:61-80. doi:10.1016/j.brainres.2012.01.016 PMID:22445064
  • Taylor JP, Brown RH, Jr., Cleveland DW. Decoding ALS: from genes to mechanism. Nature. 2016; 539:197-206. doi:10.1038/nature20413 PMID:27830784
  • Afsar Minhas FUA, Ross ED, Ben-Hur A. Amino acid composition predicts prion activity. PLoS Comput Biol. 2017; 13:e1005465. doi:10.1371/journal.pcbi.1005465 PMID:28394888
  • Ross ED, Edskes HK, Terry MJ, Wickner RB. Primary sequence independence for prion formation. Proc. Natl. Acad. Sci. USA. 2005; 102:12825-30; doi:10.1073/pnas.0506136102
  • Toombs JA, McCarty BR, Ross ED. Compositional determinants of prion formation in yeast. Mol Cell Biol. 2010; 30:319-32. doi:10.1128/MCB.01140-09 PMID:19884345
  • Toombs JA, Petri M, Paul KR, Kan GY, Ben-Hur A, Ross ED. De novo design of synthetic prion domains. Proc Natl Acad Sci USA. 2012; 109:6519-24. doi:10.1073/pnas.1119366109 PMID:22474356
  • Gonzalez Nelson AC, Paul KR, Petri M, Flores N, Rogge RA, Cascarina SM, Ross ED. Increasing prion propensity by hydrophobic insertion. PLoS One. 2014; 9:e89286. doi:10.1371/journal.pone.0089286 PMID:24586661
  • Paul KR, Hendrich CG, Waechter A, Harman MR, Ross ED. Generating new prions by targeted mutation or segment duplication. Proc Natl Acad Sci USA. 2015; 112:8584-9. doi:10.1073/pnas.1501072112 PMID:26100899
  • Paul KR, Molliex A, Cascarina S, Boncella AE, Taylor JP, Ross ED. The effects of mutations on the aggregation propensity of the human prion-like protein hnRNPA2B1. Mol Cell Biol. 2017:e00652-16. doi:10.1128/MCB.00652-16. PMID:28137911
  • Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A, et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature. 2013; 495:467-73. doi:10.1038/nature11922 PMID:23455423
  • Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP, Kim HJ, Mittag T, Taylor JP. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell. 2015; 163:123-33. doi:10.1016/j.cell.2015.09.015 PMID:26406374
  • Xiang S, Kato M, Wu LC, Lin Y, Ding M, Zhang Y, Yu Y, McKnight SL. The LC domain of hnRNPA2 adopts similar conformations in hydrogel polymers, liquid-like droplets, and nuclei. Cell. 2015; 163:829-39. doi:10.1016/j.cell.2015.10.040 PMID:26544936
  • Osherovich LZ, Cox BS, Tuite MF, Weissman JS. Dissection and design of yeast prions. PLoS Biol. 2004; 2:E86. doi:10.1371/journal.pbio.0020086 PMID:15045026
  • Batlle C, Fernandez MR, Iglesias V, Ventura S. Perfecting prediction of mutational impact on the aggregation propensity of the ALS-associated hnRNPA2 prion-like protein. FEBS Lett. 2017; 591:1966-1971. doi:10.1002/1873-3468.12698 PMID: 28542905
  • Zambrano R, Conchillo-Sole O, Iglesias V, Illa R, Rousseau F, Schymkowitz J, Sabate R, Daura X, Ventura S. PrionW: a server to identify proteins containing glutamine/asparagine rich prion-like domains and their amyloid cores. Nucleic Acids Res. 2015; 43:W331-7. doi:10.1093/nar/gkv490 PMID:25977297
  • Goldschmidt L, Teng PK, Riek R, Eisenberg D. Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc. Natl. Acad. Sci. USA. 2010; 107:3487-92; doi:10.1073/pnas.0915166107
  • Ahmed AB, Znassi N, Chateau MT, Kajava AV. A structure-based approach to predict predisposition to amyloidosis. Alzheimers Dement. 2015; 11:681-90. doi:10.1016/j.jalz.2014.06.007 PMID:25150734
  • Lancaster AK, Nutter-Upham A, Lindquist S, King OD. PLAAC: a web and command-line application to identify proteins with prion-like amino acid composition. Bioinformatics. 2014; 30:2501-2. doi:10.1093/bioinformatics/btu310 PMID:24825614
  • Sanchez de Groot N, Pallares I, Aviles FX, Vendrell J, Ventura S. Prediction of “hot spots” of aggregation in disease-linked polypeptides. BMC Struct Biol. 2005; 5:18. doi:10.1186/1472-6807-5-18 PMID:16197548
  • Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol. 2004; 22:1302-6. doi:10.1038/nbt1012 PMID:15361882
  • Li S, Zhang P, Freibaum BD, Kim NC, Kolaitis RM, Molliex A, Kanagaraj AP, Yabe I, Tanino M, Tanaka S, et al. Genetic interaction of hnRNPA2B1 and DNAJB6 in a Drosophila model of multisystem proteinopathy. Hum Mol Genet. 2016; 25:936-50. doi:10.1093/hmg/ddv627 PMID:26744327
  • Decker CJ, Teixeira D, Parker R. Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae. J Cell Biol. 2007; 179:437-49. doi:10.1083/jcb.200704147 PMID:17984320
  • Gilks N, Kedersha N, Ayodele M, Shen L, Stoecklin G, Dember LM, Anderson P. Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell. 2004; 15:5383-98. doi:10.1091/mbc.E04-08-0715 PMID:15371533
  • Espinosa Angarica V, Ventura S, Sancho J. Discovering putative prion sequences in complete proteomes using probabilistic representations of Q/N-rich domains. BMC Genomics. 2013; 14:316. doi:10.1186/1471-2164-14-316 PMID:23663289
  • Ferrone F. Analysis of protein aggregation kinetics. Methods Enzymol. 1999; 309:256-74. doi:10.1016/S0076-6879(99)09019-9 PMID:10507029
  • Goodman MA, Malik P. The potential of gene therapy approaches for the treatment of hemoglobinopathies: achievements and challenges. Ther Adv Hematol. 2016; 7:302-15. doi:10.1177/2040620716653729 PMID:27695619
  • Collins SR, Douglass A, Vale RD, Weissman JS. Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biology. 2004; 2:e321. doi:10.1371/journal.pbio.0020321 PMID:15383837
  • MacLea KS, Paul KR, Ben-Musa Z, Waechter A, Shattuck JE, Gruca M, Ross ED. Distinct amino acid compositional requirements for formation and maintenance of the [PSI(+)] prion in yeast. Mol Cell Biol. 2015; 35:899-911. doi:10.1128/MCB.01020-14 PMID:25547291
  • Chernova TA, Wilkinson KD, Chernoff YO. Prions, chaperones, and proteostasis in yeast. Cold Spring Harb Perspect Biol. 2017:a023663. doi:10.1101/cshperspect.a023663 PMID:27815300
  • Aumiller WM, Jr., Keating CD. Experimental models for dynamic compartmentalization of biomolecules in liquid organelles: Reversible formation and partitioning in aqueous biphasic systems. Adv Colloid Interface Sci. 2017; 239:75-87. doi:10.1016/j.cis.2016.06.011 PMID:27401136
  • Hyman AA, Weber CA, Julicher F. Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol. 2014; 30:39-58. doi:10.1146/annurev-cellbio-100913-013325 PMID:25288112
  • Labbadia J, Morimoto RI. The biology of proteostasis in aging and disease. Annu Rev Biochem. 2015; 84:435-64. doi:10.1146/annurev-biochem-060614-033955 PMID:25784053
  • Jovicic A, Paul JW, 3rd, Gitler AD. Nuclear transport dysfunction: a common theme in amyotrophic lateral sclerosis and frontotemporal dementia. J Neurochem. 2016; 138:134-44. doi:10.1111/jnc.13642 PMID:27087014
  • Dormann D, Rodde R, Edbauer D, Bentmann E, Fischer I, Hruscha A, Than ME, Mackenzie IR, Capell A, Schmid B, et al. ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J. 2010; 29:2841-57. doi:10.1038/emboj.2010.143 PMID:20606625
  • Cascarina SM, Ross ED. Yeast prions and human prion-like proteins: sequence features and prediction methods. Cell Mol Life Sci. 2014; 71:2047-63. doi:10.1007/s00018-013-1543-6 PMID:24390581
  • Thandapani P, O'Connor TR, Bailey TL, Richard S. Defining the RGG/RG motif. Mol Cell. 2013; 50:613-23. doi:10.1016/j.molcel.2013.05.021 PMID:23746349
  • Beyer AL, Christensen ME, Walker BW, LeStourgeon WM. Identification and characterization of the packaging proteins of core 40S hnRNP particles. Cell. 1977; 11:127-38. doi:10.1016/0092-8674(77)90323-3 PMID:872217
  • Wilk HE, Werr H, Friedrich D, Kiltz HH, Schafer KP. The core proteins of 35S hnRNP complexes. Characterization of nine different species. Eur J Biochem. 1985; 146:71-81. doi:10.1111/j.1432-1033.1985.tb08621.x PMID:3881256
  • Fujii S, Takanashi K, Kitajo K, Yamaguchi A. Treatment with a global methyltransferase inhibitor induces the intranuclear aggregation of ALS-Linked FUS mutant in vitro. Neurochem Res. 2016; 41:826-35. doi:10.1007/s11064-015-1758-z PMID:26603295
  • Nichols RC, Wang XW, Tang J, Hamilton BJ, High FA, Herschman HR, Rigby WF. The RGG domain in hnRNP A2 affects subcellular localization. Exp Cell Res. 2000; 256:522-32. doi:10.1006/excr.2000.4827 PMID:10772824
  • Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, Craggs TD, Bazett-Jones DP, Pawson T, Forman-Kay JD, et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell. 2015; 57:936-47. doi:10.1016/j.molcel.2015.01.013 PMID:25747659
  • Wall ML, Lewis SM. Methylarginines within the RGG-Motif region of hnRNP A1 affect its IRES trans-acting factor activity and are required for hnRNP A1 stress granule localization and formation. J Mol Biol. 2017; 429:295-307. doi:10.1016/j.jmb.2016.12.011 PMID:27979648

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.