1,846
Views
21
CrossRef citations to date
0
Altmetric
Extra View

Overexpression of a conserved HSP40 chaperone reduces toxicity of several neurodegenerative disease proteins

, , , , , & show all
Pages 16-22 | Received 21 Nov 2017, Accepted 19 Dec 2017, Published online: 31 Jan 2018

References

  • Cushman M, Johnson BS, King OD, et al. Prion-like disorders: blurring the divide between transmissibility and infectivity. J Cell Sci. 2010;123:1191–201. doi:10.1242/jcs.051672
  • Nonaka T, Masuda-Suzukake M, Arai T, et al. Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep. 2013;4:124–34. doi:10.1016/j.celrep.2013.06.007
  • Nonaka T, Watanabe ST, Iwatsubo T, et al. Seeded aggregation and toxicity of {alpha}-synuclein and tau: cellular models of neurodegenerative diseases. J Biol Chem. 2010;285:34885–98. doi:10.1074/jbc.M110.148460
  • Johnson BS, McCaffery JM, Lindquist S, et al. A yeast TDP-43 proteinopathy model: Exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proceedings of the National Academy of Sciences of the United States of America. 2008;105:6439–44. doi:10.1073/pnas.0802082105
  • Ju S, Tardiff DF, Han H, et al. A yeast model of FUS/TLS-dependent cytotoxicity. PLoS Biol. 2011;9:e1001052. doi:10.1371/journal.pbio.1001052
  • Khurana V, Lindquist S. Modelling neurodegeneration in Saccharomyces cerevisiae: why cook with baker's yeast? Nat Rev Neurosci. 2010;11:436–49. doi:10.1038/nrn2809
  • Kryndushkin D, Ihrke G, Piermartiri TC, et al. A yeast model of optineurin proteinopathy reveals a unique aggregation pattern associated with cellular toxicity. Molecular microbiology. 2012;86:1531–47. doi:10.1111/mmi.12075
  • Kryndushkin D, Shewmaker F. Modeling ALS and FTLD proteinopathies in yeast: an efficient approach for studying protein aggregation and toxicity. Prion. 2011;5:250–7. doi:10.4161/pri.17229
  • Meriin AB, Zhang X, He X, et al. Huntington toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. J Cell Biol. 2002;157:997–1004. doi:10.1083/jcb.200112104
  • Osherovich LZ, Weissman JS. Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI(+)] prion. Cell. 2001;106:183–94. doi:10.1016/S0092-8674(01)00440-8
  • Vitrenko YA, Gracheva EO, Richmond JE, et al. Visualization of aggregation of the Rnq1 prion domain and cross-seeding interactions with Sup35NM. J Biol Chem. 2007;282:1779–87. doi:10.1074/jbc.M609269200
  • Derkatch IL, Uptain SM, Outeiro TF, et al. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro. Proceedings of the National Academy of Sciences of the United States of America. 2004;101:12934–9. doi:10.1073/pnas.0404968101
  • Derkatch IL, Bradley ME, Hong JY, et al. Prions affect the appearance of other prions: the story of [PIN(+)]. Cell. 2001;106:171–82. doi:10.1016/S0092-8674(01)00427-5
  • Du Z, Li L. Investigating the interactions of yeast prions: [SWI+], [PSI+], and [PIN+]. Genetics. 2014;197:685–700. doi:10.1534/genetics.114.163402
  • Bonini NM, Gitler AD. Model organisms reveal insight into human neurodegenerative disease: ataxin-2 intermediate-length polyglutamine expansions are a risk factor for ALS. Journal of molecular neuroscience: MN. 2011;45:676–83. doi:10.1007/s12031-011-9548-9
  • Treusch S, Hamamichi S, Goodman JL, et al. Functional links between Abeta toxicity, endocytic trafficking, and Alzheimer's disease risk factors in yeast. Science. 2011;334:1241–5. doi:10.1126/science.1213210
  • Couthouis J, Hart MP, Erion R, et al. Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis. Hum Mol Genet. 2012;21:2899–911. doi:10.1093/hmg/dds116
  • Couthouis J, Hart MP, Shorter J, et al. A yeast functional screen predicts new candidate ALS disease genes. Proceedings of the National Academy of Sciences of the United States of America. 2011;108:20881–90. doi:10.1073/pnas.1109434108
  • Elden AC, Kim HJ, Hart MP, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature. 2010;466:1069–75. doi:10.1038/nature09320
  • Tardiff DF, Jui NT, Khurana V, et al. Yeast reveal a “druggable” Rsp5/Nedd4 network that ameliorates alpha-synuclein toxicity in neurons. Science. 2013;342:979–83. doi:10.1126/science.1245321
  • Auburger G, Sen NE, Meierhofer D, et al. Efficient Prevention of Neurodegenerative Diseases by Depletion of Starvation Response Factor Ataxin-2. Trends Neurosci. 2017;40:507–16. doi:10.1016/j.tins.2017.06.004
  • Becker LA, Huang B, Bieri G, et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature. 2017;544:367–71. doi:10.1038/nature22038
  • Gitler AD, Dhillon P, Shorter J. Neurodegenerative disease: models, mechanisms, and a new hope. Dis Models Mech. 2017;10:499–502. doi:10.1242/dmm.030205
  • Sproviero W, Shatunov A, Stahl D, et al. ATXN2 trinucleotide repeat length correlates with risk of ALS. Neurobiol Aging. 2017;51:178. e1- e9. doi:10.1016/j.neurobiolaging.2016.11.010
  • King OD, Gitler AD, Shorter J. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res. 2012;1462:61–80. doi:10.1016/j.brainres.2012.01.016
  • Neumann M, Kwong LK, Sampathu DM, et al. TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis: protein misfolding diseases without amyloidosis. Archives of neurology. 2007;64:1388–94. doi:10.1001/archneur.64.10.1388
  • Gitler ADaEAC. Modulators of TDP-43 Mediated Toxicity and Methods of Use Thereof for Identifying Agents Having Efficacy for the Treatment and Prevention of Proteinopathies. USA, 2012.
  • Sun Z, Diaz Z, Fang X, et al. Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol. 2011;9:e1000614. doi:10.1371/journal.pbio.1000614
  • Park SH, Kukushkin Y, Gupta R, et al. PolyQ proteins interfere with nuclear degradation of cytosolic proteins by sequestering the Sis1p chaperone. Cell. 2013;154:134–45. doi:10.1016/j.cell.2013.06.003
  • Yang Z, Stone DE, Liebman SW. Prion promoted phosphorylation of heterologous amyloid is coupled with ubiquitin-proteasome system inhibition and toxicity. Mol Microbiol. 2014; doi:10.1111/mmi.12716
  • Park SK, Hong JY, Arslan F, et al. Overexpression of the essential Sis1 chaperone reduces TDP-43 effects on toxicity and proteolysis. PLoS Genet. 2017;13:e1006805. doi:10.1371/journal.pgen.1006805
  • Udan M, Baloh RH. Implications of the prion-related Q/N domains in TDP-43 and FUS. Prion. 2011;5:1–5. doi:10.4161/pri.5.1.14265
  • Lee SJ, Lim HS, Masliah E, et al. Protein aggregate spreading in neurodegenerative diseases: problems and perspectives. Neurosci Res. 2011;70:339–48. doi:10.1016/j.neures.2011.05.008
  • Taneja V, Maddelein ML, Talarek N, et al. A non-Q/N-rich prion domain of a foreign prion, [Het-s], can propagate as a prion in yeast. Mol Cell. 2007;27:67–77. doi:10.1016/j.molcel.2007.05.027
  • Sondheimer N, Lopez N, Craig EA, et al. The role of Sis1 in the maintenance of the [RNQ+] prion. EMBO J. 2001;20:2435–42. doi:10.1093/emboj/20.10.2435
  • Liebman SW, Chernoff YO. Prions in yeast. Genetics. 2012;191:1041–72. doi:10.1534/genetics.111.137760

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.