978
Views
8
CrossRef citations to date
0
Altmetric
Research Paper

Differential effects of divalent cations on elk prion protein fibril formation and stability

&
Pages 63-71 | Received 02 Oct 2017, Accepted 25 Dec 2017, Published online: 31 Jan 2018

References

  • Prusiner SB.. Novel proteinaceous infectious particles cause scrapie. Science. 1982;216(4542):136–44. doi:10.1126/science.6801762
  • Prusiner SB. The prion diseases. Brain Pathol. 1998;8(3):499–513. doi:10.1111/j.1750-3639.1998.tb00171.x
  • Williams ES, Young S. Chronic wasting disease of captive mule deer: a spongiform encephalopathy. J Wildl Dis. 1980;16(1):89–98. doi:10.7589/0090-3558-16.1.89
  • Williams ES, Young S. Spongiform encephalopathy of Rocky Mountain elk. J Wildl Dis. 1982;18(4):465–71. doi:10.7589/0090-3558-18.4.465
  • Spraker TR, Miller MW, Williams ES, et al. Spongiform encephalopathy in free-ranging mule deer (Odocoileus hemionus), white-tailed deer (Odocoileus virginianus) and Rocky Mountain elk (Cervus elaphus nelsoni) in northcentral Colorado. J Wildl Dis. 1997;33(1):1–6. doi:10.7589/0090-3558-33.1.1
  • Raymond GJ, Bossers A, Raymond LD, et al. Evidence of a molecular barrier limiting susceptibility of humans, cattle and sheep to chronic wasting disease. EMBO J. 2000;19(17):4425–30. doi:10.1093/emboj/19.17.4425
  • Kurt TD, Sigurdson CJ. Cross-species transmission of CWD prions. Prion. 2016;10(1):83–91. doi:10.1080/19336896.2015.1118603
  • Kurt TD, Telling GC, Zabel MD, et al. Trans-species amplification of PrP(CWD) and correlation with rigid loop 170N. Virology. 2009;387(1):235–43. doi:10.1016/j.virol.2009.02.025
  • Hwang S, Greenlee JJ, Nicholson EM. Use of bovine recombinant prion protein and real-time quaking-induced conversion to detect cattle transmissible mink encephalopathy prions and discriminate classical and atypical L- and H-Type bovine spongiform encephalopathy. PLoS One. 2017;12(2):e0172391. doi:10.1371/journal.pone.0172391
  • Moore SJ, Smith JD, Greenlee MH, et al. Comparison of Two US Sheep Scrapie Isolates Supports Identification as Separate Strains. Vet Pathol. 2016;53(6):1187–1196. doi:10.1177/0300985816629712
  • Moore SJ, West Greenlee MH, Smith JD, et al. A Comparison of Classical and H-Type Bovine Spongiform Encephalopathy Associated with E211K Prion Protein Polymorphism in Wild-Type and EK211 Cattle Following Intracranial Inoculation. Front Vet Sci. 2016;3:78. doi:10.3389/fvets.2016.00078
  • Hamir AN, Gidlewski T, Spraker TR, et al. Preliminary observations of genetic susceptibility of elk (Cervus elaphus nelsoni) to chronic wasting disease by experimental oral inoculation. J Vet Diagn Invest. 2006;18(1):110–4. doi:10.1177/104063870601800118
  • O'Rourke KI, Spraker TR, Zhuang D, et al. Elk with a long incubation prion disease phenotype have a unique PrPd profile. Neuroreport. 2007;18(18):1935–8. doi:10.1097/WNR.0b013e3282f1ca2f
  • Asante EA, Linehan JM, Gowland I, et al. Dissociation of pathological and molecular phenotype of variant Creutzfeldt-Jakob disease in transgenic human prion protein 129 heterozygous mice. Proc Natl Acad Sci U S A. 2006;103(28):10759–64. doi:10.1073/pnas.0604292103
  • Wadsworth JD, Asante EA, Desbruslais M, et al. Human prion protein with valine 129 prevents expression of variant CJD phenotype. Science. 2004;306(5702):1793–6. doi:10.1126/science.1103932
  • Meade-White K, Race B, Trifilo M, et al. Resistance to chronic wasting disease in transgenic mice expressing a naturally occurring allelic variant of deer prion protein. J Virol. 2007;81(9):4533–9. doi:10.1128/JVI.02762-06
  • Mitchell GB, Sigurdson CJ, O'Rourke KI, et al. Experimental oral transmission of chronic wasting disease to reindeer (Rangifer tarandus tarandus). PLoS One. 2012;7(6):e39055. doi:10.1371/journal.pone.0039055
  • USGS National Wildlife Health Center. Map of chronic wasting disease in North America. <http://www.nwhc.usgs.gov/disease_information/chronic_wasting_disease/>.
  • Lee YH, Sohn HJ, Kim MJ, et al. Strain characterization of the Korean CWD cases in 2001 and 2004; J Vet Med Sci. 2013;75(1):95–8. doi:10.1292/jvms.12-0077
  • Benestad SL, Mitchell G, Simmons M, et al. First case of chronic wasting disease in Europe in a Norwegian free-ranging reindeer. Vet Res. 2016;47(1):88. doi:10.1186/s13567-016-0375-4
  • Stockel J, Safar J, Wallace AC, et al. Prion protein selectively binds copper(II) ions. Biochemistry. 1998;37(20):7185–93. doi:10.1021/bi972827k
  • Walter ED, Stevens DJ, Spevacek AR, et al. Copper binding extrinsic to the octarepeat region in the prion protein. Curr Protein Pept Sci. 2009;10(5):529–35. doi:10.2174/138920309789352056
  • Walter ED, Stevens DJ, Visconte MP, et al. The prion protein is a combined zinc and copper binding protein: Zn2+ alters the distribution of Cu2+ coordination modes. J Am Chem Soc. 2007;129(50):15440–1. doi:10.1021/ja077146j
  • Nichols TA, Spraker TR, Gidlewski T, et al. Dietary magnesium and copper affect survival time and neuroinflammation in chronic wasting disease. Prion. 2016;10(3):228–50. doi:10.1080/19336896.2016.1181249
  • Bocharova OV, Breydo L, Salnikov VV, et al. Copper(II) inhibits in vitro conversion of prion protein into amyloid fibrils. Biochemistry. 2005;44(18):6776–87. doi:10.1021/bi050251q
  • Greenfield NJ. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat Protoc. 2006;1(6):2527–35. doi:10.1038/nprot.2006.204
  • Santoro MM, Bolen DW. Unfolding free energy changes determined by the linear extrapolation method. 1 Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants Biochemistry. 1988;27(21):8063–8.
  • Bocharova OV, Breydo L, Parfenov AS, et al. In vitro conversion of full-length mammalian prion protein produces amyloid form with physical properties of PrP(Sc). J Mol Biol. 2005;346(2):645–59. doi:10.1016/j.jmb.2004.11.068
  • Brown DR, Hafiz F, Glasssmith LL, et al. Consequences of manganese replacement of copper for prion protein function and proteinase resistance. EMBO J. 2000;19(6):1180–6. doi:10.1093/emboj/19.6.1180
  • Greenfield NJ. Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc. 2006;1(6):2876–90. doi:10.1038/nprot.2006.202
  • Greenfield NJ. Determination of the folding of proteins as a function of denaturants, osmolytes or ligands using circular dichroism. Nat Protoc. 2006;1(6):2733–41.
  • Johnson WC, Jr.. Protein secondary structure and circular dichroism: A practical guide. Proteins. 1990;7(3):205–14. doi:10.1002/prot.340070302
  • Greenfield NJ.. Methods to estimate the conformation of proteins and polypeptides from circular dichroism data. Anal Biochem. 1996;235(1):1–10. doi:10.1006/abio.1996.0084
  • Wilham JM, Orru CD, Bessen RA, et al. Rapid end-point quantitation of prion seeding activity with sensitivity comparable to bioassays. PLoS Pathog. 2010;6(12):e1001217. doi:10.1371/journal.ppat.1001217
  • Vascellari S, Orru CD, Hughson AG, et al. Prion seeding activities of mouse scrapie strains with divergent PrPSc protease sensitivities and amyloid plaque content using RT-QuIC and eQuIC. PLoS One. 2012;7(11):e48969. doi:10.1371/journal.pone.0048969
  • Biancalana M, Koide S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta. 2010;1804(7):1405–12. doi:10.1016/j.bbapap.2010.04.001
  • Vrentas CE, Onstot S, Nicholson EM. A comparative analysis of rapid methods for purification and refolding of recombinant bovine prion protein. Protein Expr Purif. 2012;82(2):380–8. doi:10.1016/j.pep.2012.02.008
  • Zhu F, Davies P, Thompsett AR, et al. Raman optical activity and circular dichroism reveal dramatic differences in the influence of divalent copper and manganese ions on prion protein folding. Biochemistry. 2008;47(8):2510–7. doi:10.1021/bi7022893
  • Gossert AD, Bonjour S, Lysek DA, et al. Prion protein NMR structures of elk and of mouse/elk hybrids. Proc Natl Acad Sci U S A. 2005;102(3):646–50. doi:10.1073/pnas.0409008102
  • Spevacek AR, Evans EG, Miller JL, et al. Zinc drives a tertiary fold in the prion protein with familial disease mutation sites at the interface. Structure. 2013;21(2):236–46. doi:10.1016/j.str.2012.12.002
  • Evans EG, Pushie MJ, Markham KA, et al. Interaction between Prion Protein's Copper-Bound Octarepeat Domain and a Charged C-Terminal Pocket Suggests a Mechanism for N-Terminal Regulation. Structure. 2016;24(7):1057–67. doi:10.1016/j.str.2016.04.017
  • Sharma A, Bruce KL, Chen B, et al. Contributions of the Prion Protein Sequence, Strain, and Environment to the Species Barrier. J Biol Chem. 2016;291(3):1277–88. doi:10.1074/jbc.M115.684100
  • Gonzalez-Iglesias R, Pajares MA, Ocal C, et al. Prion protein interaction with glycosaminoglycan occurs with the formation of oligomeric complexes stabilized by Cu(II) bridges. J Mol Biol. 2002;319(2):527–40. doi:10.1016/S0022-2836(02)00341-8
  • Miller Y, Ma B, Nussinov R. Zinc ions promote Alzheimer Abeta aggregation via population shift of polymorphic states. Proc Natl Acad Sci U S A. 2010;107(21):9490–5. doi:10.1073/pnas.0913114107
  • Miller Y. MB, Nussinov R.. Metal binding sites in amyloid oligomers: Complexes and mechanisms. Coordination Chemistry Reviews. 2012;256(19-20):7. doi:10.1016/j.ccr.2011.12.022
  • Parthasarathy S, Long F, Miller Y, et al. Molecular-level examination of Cu2+ binding structure for amyloid fibrils of 40-residue Alzheimer's beta by solid-state NMR spectroscopy. J Am Chem Soc. 2011;133(10):3390–400. doi:10.1021/ja1072178
  • Swint L, Robertson AD. Thermodynamics of unfolding for turkey ovomucoid third domain: thermal and chemical denaturation. Protein Sci. 1993;2(12):2037–49. doi:10.1002/pro.5560021205