1,686
Views
5
CrossRef citations to date
0
Altmetric
Review

Prion domains as a driving force for the assembly of functional nanomaterials

ORCID Icon & ORCID Icon
Pages 170-179 | Received 14 May 2020, Accepted 12 Jun 2020, Published online: 28 Jun 2020

References

  • Dobson CM. Protein folding and misfolding. Nature. 2003;426(6968):884–890.
  • Aguzzi A , Haass C . Games played by rogue proteins in prion disorders and Alzheimer’s disease. Science. 2003;302(5646):814–818.
  • Hardy J , Selkoe DJ . The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. science. 2002;297(5580):353–356.
  • Fowler DM , Koulov AV , Balch WE , et al. Functional amyloid–from bacteria to humans. Trends Biochem Sci. 2007;32(5):217–224.
  • Chapman MR , Robinson LS , Pinkner JS , et al. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science. 2002;295(5556):851–855.
  • Hervas R , Rau MJ , Park Y , et al. Cryo-EM structure of a neuronal functional amyloid implicated in memory persistence in Drosophila. Science. 2020;367(6483):1230–1234.
  • Oh J , Kim J-G , Jeon E , et al. Amyloidogenesis of type III-dependent harpins from plant pathogenic bacteria. J Biol Chem. 2007;282(18):13601–13609.
  • Fowler DM , Koulov AV , Alory-Jost C , et al. Functional amyloid formation within mammalian tissue. PLoS Biol. 2005;4(1):e6.
  • Maji SK , Perrin MH , Sawaya MR , et al. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science. 2009;325(5938):328–332.
  • Tycko R , Wickner RB . Molecular structures of amyloid and prion fibrils: consensus versus controversy. Acc Chem Res. 2013;46(7):1487–1496.
  • Sunde M , Serpell LC , Bartlam M , et al. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol. 1997;273(3):729–739.
  • Makin OS , Atkins E , Sikorski P , et al. Molecular basis for amyloid fibril formation and stability. Proc Nat Acad Sci. 2005;102(2):315–320.
  • Sipe JD , Cohen AS . History of the amyloid fibril. J Struct Biol. 2000;130(2–3):88–98.
  • Adler-Abramovich L , Aronov D , Beker P , et al. Self-assembled arrays of peptide nanotubes by vapour deposition. Nat Nanotechnol. 2009;4(12):849.
  • Romero D , Aguilar C , Losick R , et al. Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Nat Acad Sci. 2010;107(5):2230–2234.
  • Jacob RS , Ghosh D , Singh PK , et al. Self healing hydrogels composed of amyloid nano fibrils for cell culture and stem cell differentiation. Biomaterials. 2015;54:97–105.
  • Li C , Adamcik J , Mezzenga R . Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties. Nat Nanotechnol. 2012;7(7):421.
  • Ryu J , Kim SW , Kang K , et al. Mineralization of self‐assembled peptide nanofibers for rechargeable lithium ion batteries. Adv Mater. 2010;22(48):5537–5541.
  • Wakabayashi R , Suehiro A , Goto M , et al. Designer aromatic peptide amphiphiles for self-assembly and enzymatic display of proteins with morphology control. Chem Comm. 2019;55(5):640–643.
  • Chernoff YO , Lindquist SL , Ono B-I , et al. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science. 1995;268(5212):880–884.
  • Taguchi H , Kawai‐Noma S . Amyloid oligomers: diffuse oligomer‐based transmission of yeast prions. Febs J. 2010;277(6):1359–1368.
  • Kushnirov VV , Vishnevskaya AB , Alexandrov IM , et al. Prion and nonprion amyloids: a comparison inspired by the yeast Sup35 protein. Prion. 2007;1(3):179–184.
  • Horwich AL , Weissman JS . Deadly conformations—protein misfolding in prion disease. Cell. 1997;89(4):499–510.
  • Suzuki G , Shimazu N , Tanaka M . A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress. Science. 2012;336(6079):355–359.
  • Chien P , Weissman JS , DePace AH . Emerging principles of conformation-based prion inheritance. Annu Rev Biochem. 2004;73(1):617–656.
  • Uptain SM , Lindquist S . Prions as protein-based genetic elements. Annu Rev Microbiol. 2002;56(1):703–741.
  • Ross ED , Minton A , Wickner RB . Prion domains: sequences, structures and interactions. Nat Cell Biol. 2005;7(11):1039–1044.
  • Hafner-Bratkovič I , Bester R , Pristovšek P , et al. Globular domain of the prion protein needs to be unlocked by domain swapping to support prion protein conversion. J Biol Chem. 2011;286(14):12149–12156.
  • Knowles TP , Mezzenga R . Amyloid fibrils as building blocks for natural and artificial functional materials. Adv Mater. 2016;28(31):6546–6561.
  • Zhou XM , Entwistle A , Zhang H , et al. Self‐assembly of amyloid fibrils that display active enzymes. ChemCatChem. 2014;6(7):1961–1968.
  • Baxa U , Speransky V , Steven AC , et al. Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein. Proc Nat Acad Sci. 2002;99(8):5253–5260.
  • Men D , Guo Y-C , Zhang Z-P , et al. Seeding-induced self-assembling protein nanowires dramatically increase the sensitivity of immunoassays. Nano Lett. 2009;9(6):2246–2250.
  • Schmuck B , Sandgren M , Härd T . A fine‐tuned composition of protein nanofibrils yields an upgraded functionality of displayed antibody binding domains. Biotechnol J. 2017;12(6):1600672.
  • Alper T , Cramp W , Haig DA , et al. Does the agent of scrapie replicate without nucleic acid? Nature. 1967;214(5090):764–766.
  • Griffith JS . Nature of the scrapie agent: self-replication and scrapie. Nature. 1967;215(5105):1043–1044.
  • Prusiner SB . Novel proteinaceous infectious particles cause scrapie. Science. 1982;216(4542):136–144.
  • Aigle M , Lacroute F . Genetical aspects of [URE3], a non-mitochondrial, cytoplasmically inherited mutation in yeast. Mole Gen Genet MGG. 1975;136(4):327–335.
  • Wickner RB . [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science. 1994;264(5158):566–569.
  • Wickner RB . Yeast and fungal prions. Cold Spring Harb Perspect Biol. 2016;8(9):a023531.
  • Cox B . ψ, a cytoplasmic suppressor of super-suppressor in yeast. Heredity (Edinb). 1965;20(4):505–521.
  • Chernoff YO , Derkach IL , Inge-Vechtomov SG . Multicopy SUP35 gene induces de-novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Curr Genet. 1993;24(3):268–270.
  • Lund P , Cox B . Reversion analysis of [psi−] mutations in Saccharomyces cerevisiae. Genet Res (Camb). 1981;37(2):173–182.
  • Wickner RB , Shewmaker FP , Bateman DA , et al. Yeast prions: structure, biology, and prion-handling systems. Microbiol Mol Biol Rev. 2015;79(1):1–17.
  • Derkatch IL , Bradley ME , Hong JY , et al. Prions affect the appearance of other prions: the story of [PIN+]. Cell. 2001;106(2):171–182.
  • Du Z , Park K-W , Yu H , et al. Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae. Nat Genet. 2008;40(4):460–465.
  • Alberti S , Halfmann R , King O , et al. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell. 2009;137(1):146–158.
  • Glover JR , Kowal AS , Schirmer EC , et al. Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell. 1997;89(5):811–819.
  • Taylor KL , Cheng N , Williams RW , et al. Prion domain initiation of amyloid formation in vitro from native Ure2p. Science. 1999;283(5406):1339–1343.
  • Masison DC , Wickner RB . Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science. 1995;270(5233):93–95.
  • Paushkin SV , Kushnirov VV , Smirnov VN , et al. In vitro propagation of the prion-like state of yeast Sup35 protein. Science. 1997;277(5324):381–383.
  • King C-Y , Diaz-Avalos R . Protein-only transmission of three yeast prion strains. Nature. 2004;428(6980):319–323.
  • Toombs JA , McCarty BR , Ross ED . Compositional determinants of prion formation in yeast. Mol Cell Biol. 2010;30(1):319–332.
  • Shewmaker F , Wickner RB , Tycko R . Amyloid of the prion domain of Sup35p has an in-register parallel β-sheet structure. Proc Nat Acad Sci. 2006;103(52):19754–19759.
  • Baxa U , Taylor KL , Wall JS , et al. Architecture of Ure2p prion filaments the N-terminal domains form a central core fiber. J Biol Chem. 2003;278(44):43717–43727.
  • Wickner RB , Shewmaker F , Edskes H , et al. Prion amyloid structure explains templating: how proteins can be genes. FEMS Yeast Res. 2010;10(8):980–991.
  • Glass NL , Dementhon K . Non-self recognition and programmed cell death in filamentous fungi. Curr Opin Microbiol. 2006;9(6):553–558.
  • Wasmer C , Lange A , Van Melckebeke H , et al. Amyloid fibrils of the HET-s (218–289) prion form a β solenoid with a triangular hydrophobic core. Science. 2008;319(5869):1523–1526.
  • Vázquez-Fernández E , Vos MR , Afanasyev P , et al. The structural architecture of an infectious mammalian prion using electron cryomicroscopy. PLoS Pathog. 2016;12(9):e1005835.
  • Spagnolli G , Rigoli M , Orioli S , et al. Full atomistic model of prion structure and conversion. PLoS Pathog. 2019;15(7):e1007864.
  • Schlieker C , Tews I , Bukau B , et al. Solubilization of aggregated proteins by ClpB/DnaK relies on the continuous extraction of unfolded polypeptides. FEBS Lett. 2004;578(3):351–356.
  • Winkler J , Tyedmers J , Bukau B , et al. Hsp70 targets Hsp100 chaperones to substrates for protein disaggregation and prion fragmentation. J Cell Biol. 2012;198(3):387–404.
  • Ter-Avanesyan MD , Dagkesamanskaya AR , Kushnirov VV , et al. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. Genetics. 1994;137(3):671–676.
  • Balbirnie M , Grothe R , Eisenberg DS . An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid. Proc Natl Acad Sci U S A. 2001;98(5):2375–2380.
  • Bradley ME , Liebman SW . The Sup35 domains required for maintenance of weak, strong or undifferentiated yeast [PSI+] prions. Mol Microbiol. 2004;51(6):1649–1659.
  • Liu -J-J , Sondheimer N , Lindquist SL . Changes in the middle region of Sup35 profoundly alter the nature of epigenetic inheritance for the yeast prion [PSI+]. Proc Nat Acad Sci. 2002;99(suppl 4):16446–16453.
  • Masison DC , Maddelein M-L , Wickner RB . The prion model for [URE3] of yeast: spontaneous generation and requirements for propagation. Proc Nat Acad Sci. 1997;94(23):12503–12508.
  • Magasanik B , Kaiser CA . Nitrogen regulation in Saccharomyces cerevisiae. Gene. 2002;290(1–2):1–18.
  • Patino MM , Liu -J-J , Glover JR , et al. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science. 1996;273(5275):622–626.
  • Bai M , Zhou J-M , Perrett S . The yeast prion protein Ure2 shows glutathione peroxidase activity in both native and fibrillar forms. J Biol Chem. 2004;279(48):50025–50030.
  • Baxa U , Keller PW , Cheng N , et al. In Sup35p filaments (the [PSI+] prion), the globular C‐terminal domains are widely offset from the amyloid fibril backbone. Mol Microbiol. 2011;79(2):523–532.
  • Kryndushkin DS , Wickner RB , Tycko R . The core of Ure2p prion fibrils is formed by the N-terminal segment in a parallel cross-β structure: evidence from solid-state NMR. J Mol Biol. 2011;409(2):263–277.
  • Men D , Zhang Z-P , Guo Y-C , et al. An auto-biotinylated bifunctional protein nanowire for ultra-sensitive molecular biosensing. Biosens Bioelectron. 2010;26(4):1137–1141.
  • Leng Y , Wei HP , Zhang ZP , et al. Integration of a fluorescent molecular biosensor into self‐assembled protein nanowires: a large sensitivity enhancement. Angew Chem. 2010;49(40):7243–7246.
  • Zhou X-M , Shimanovich U , Herling TW , et al. Enzymatically active microgels from self-assembling protein nanofibrils for microflow chemistry. ACS Nano. 2015;9(6):5772–5781.
  • Altamura L , Horvath C , Rengaraj S , et al. A synthetic redox biofilm made from metalloprotein–prion domain chimera nanowires. Nat Chem. 2017;9(2):157–163.
  • Schmuck B , Gudmundsson M , Blomqvist J , et al. Production of ready-to-use functionalized Sup35 nanofibrils secreted by Komagataella pastoris. ACS Nano. 2018;12(9):9363–9371.
  • Schmuck B, Gudmundsson M, Härd T, Sandgren M . Coupled chemistry kinetics demonstrate the utility of functionalized Sup35 amyloid nanofibrils in biocatalytic cascades. J Biol Chem. 2019;294(41):14966–14977.
  • Toombs JA , Petri M , Paul KR , et al. De novo design of synthetic prion domains. Proc Nat Acad Sci. 2012;109(17):6519–6524.
  • Ross ED , Edskes HK , Terry MJ , et al. Primary sequence independence for prion formation. Proc Nat Acad Sci. 2005;102(36):12825–12830.
  • Sabate R , Rousseau F , Schymkowitz J , et al. Amyloids or prions? That is the question. Prion. 2015;9(3):200–206.
  • Sant’Anna R , Fernández MR , Batlle C , et al. Characterization of amyloid cores in prion domains. Sci Rep. 2016;6(1):1–10.
  • Batlle C , de Groot NS , Iglesias V , et al. Characterization of soft amyloid cores in human prion-like proteins. Sci Rep. 2017;7(1):1–16.
  • Kawai-Noma S , Pack C-G , Kojidani T , et al. In vivo evidence for the fibrillar structures of Sup35 prions in yeast cells. J Cell Biol. 2010;190(2):223–231.
  • Duernberger Y , Liu S , Riemschoss K , et al. Prion replication in the mammalian cytosol: functional regions within a prion domain driving induction, propagation, and inheritance. Mol Cell Biol. 2018;38(15):e00111–18.
  • Wang W , Navarro S , Azizyan RA , et al. Prion soft amyloid core driven self-assembly of globular proteins into bioactive nanofibrils. Nanoscale. 2019;11(26):12680–12694.
  • Zambrano R , Conchillo-Sole O , Iglesias V , et al. PrionW: a server to identify proteins containing glutamine/asparagine rich prion-like domains and their amyloid cores. Nucleic Acids Res. 2015;43(W1):W331–W337.
  • Díaz-Caballero M , Navarro S , Fuentes I , et al. Minimalist prion-inspired polar self-assembling peptides. ACS Nano. 2018;12(6):5394–5407.