2,120
Views
8
CrossRef citations to date
0
Altmetric
Extra-Views

On the reactive states of astrocytes in prion diseases

Pages 87-93 | Received 30 Mar 2021, Accepted 12 May 2021, Published online: 31 May 2021

References

  • Dallérac G, Zapata J, Rouach N. Versatile control of synaptic circuits by astrocytes: where, when and how? Nat Rev Neurosci. 2018 2018/12/01;19(12):729–743.
  • Santello M, Toni N, Volterra A. Astrocyte function from information processing to cognition and cognitive impairment. Nat Neurosci. 2019 Feb 1;22(2):154–166.
  • Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010 Jan 1;119(1):7–35.
  • Makarava N, Chang JC-Y, Kushwaha R, et al. Region-specific response of astrocytes to prion infection [original research]. Front Neurosci. 2019 Oct 9;13(1):e1048.
  • Bradford BM, Wijaya CAW, Mabbott NA. Discrimination of prion strain targeting in the central nervous system via reactive astrocyte heterogeneity in CD44 expression [original research]. Front Cell Neurosci. 2019 Sept 10;13(411). DOI:https://doi.org/10.3389/fncel.2019.00411
  • Ben Haim L, M-a C-DS, Ceyzériat K, et al. Elusive roles for reactive astrocytes in neurodegenerative diseases [Review]. Front Cell Neurosci. 2015 Aug 3;9(278): e278.
  • Oksanen M, Lehtonen S, Jaronen M, et al. Astrocyte alterations in neurodegenerative pathologies and their modeling in human induced pluripotent stem cell platforms. Cell Mol Life Sci. 2019 July 1;76(14):2739–2760.
  • Acioglu C, Li L, Elkabes S. Contribution of astrocytes to neuropathology of neurodegenerative diseases. Brain Res. 2021 Jan;28:147291.
  • Habib N, McCabe C, Medina S, et al. Disease-associated astrocytes in Alzheimer’s disease and aging. Nat Neurosci. 2020 Jun;23(6):701–706.
  • Escartin C, Galea E, Lakatos A, et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci. 2021 Mar;24(3):312–325.
  • Zamanian JL, Xu L, Foo LC, et al. Genomic analysis of reactive astrogliosis. J Neurosci. 2012;32(18):6391–6410.
  • Liddelow SA, Barres BA. Reactive astrocytes: production, function, and therapeutic potential. Immunity. 2017;46(6):957–967.
  • Morrissette DA, Parachikova A, Green KN, et al. Relevance of transgenic mouse models to human Alzheimer disease. J Biol Chem. 2009 Mar 6;284(10):6033–6037.
  • Dawson TM, Golde TE, Lagier-Tourenne C. Animal models of neurodegenerative diseases. Nat Neurosci. 2018 Oct 1;21(10):1370–1379.
  • Friedman BA, Srinivasan K, Ayalon G, et al. Diverse brain myeloid expression profiles reveal distinct microglial activation states and aspects of Alzheimer’s disease not evident in mouse models. Cell Rep. 2018;22(3):832–847.
  • Watts JC, Prusiner SB. Mouse models for studying the formation and propagation of prions. J Biol Chem. 2014 Jul 18;289(29):19841–19849.
  • Wang F, Wang X, Yuan CG, et al. Generating a prion bacterially expressed recombinant prion protein. Science. 2010;327(5969):1132–1135.
  • Makarava N, Kovacs GG, Savtchenko R, et al. A new mechanism for transmissible Prion diseases. J Neurosci. 2012;32(21):7345–7355.
  • Makarava N, Kovacs GG, Savtchenko R, et al. Genesis of mammalian prions: from non-infectious amyloid fibrils to a transmissible prion disease. PLoS Pathogen. 2011;7(12):e1002419.
  • Deleault NR, Walsh DJ, Piro JR, et al. Cofactor molecules maintain infectious conformation and restrict strain properties in purified prions. ProcAcadNatlSciUSA. 2012;109(28):E1938–E1946.
  • Makarava N, Chang JC-Y, Molesworth K, et al. Region-specific glial homeostatic signature in prion diseases is replaced by a uniform neuroinflammation signature, common for brain regions and prion strains with different cell tropism. Neurobiol Dis. 2020 Apr 1;137(1):e104783.
  • Makarava N, Chang JC-Y, Molesworth K, et al. Posttranslational modifications define course of prion strain adaptation and disease phenotype. J Clin Invest. 2020 Aug 3;130(8):4382–4395.
  • Hartmann K, Sepulveda-Falla D, Rose IVL, et al. Complement 3+-astrocytes are highly abundant in prion diseases, but their abolishment led to an accelerated disease course and early dysregulation of microglia [journal article]. Acta Neuropathol Commun. 2019 May 22;7(1):83.
  • Scheckel C, Imeri M, Schwarz P, et al. Ribosomal profiling during prion disease uncovers progressive translational derangement in glia but not in neurons. Elife. 2020 Sep 22;9. DOI:https://doi.org/10.7554/eLife.62911
  • Carroll JA, Race B, Williams K, et al. RNA-seq and network analysis reveal unique glial gene expression signatures during prion infection. Mol Brain. 2020 May 7;13(1):71.
  • Makarava N, Mychko O, Chang JC-Y, et al. The degree of astrocyte activation is predictive of the incubation time to prion disease. Acta Neuropathol Commun. 2021 May 12;9(1):87.
  • Carroll JA, Striebel JF, Rangel A, et al. Prion strain differences in accumulation of PrPSc on neurons and glia are associated with similar expression profiles of neuroinflammatory genes: comparison of three prion strains. PLoS Pathog. 2016;12(4):e1005551.
  • Kovacs GG, Makarava N, Savtchenko R, et al. Atypical and classical forms of the disease-associated state of the prion protein exhibit distinct neuronal tropism, deposition patterns, and lesion profiles. Am J Pathol. 2013;183(5):1539–1547.
  • Kushwaha R, Sinha A, Makarava N, et al. Non-cell autonomous astrocyte-mediated neuronal toxicity in prion diseases. Acta Neuropathol Commun. 2021 Feb 5;9(1):22.
  • Smith HL, Freeman OJ, Butcher AJ, et al. Astrocyte unfolded protein response induces a specific reactivity state that causes non-cell-autonomous neuronal degeneration. Neuron. 2020 Mar 4;105(5):855–866.e5.
  • Choi YP, Head MW, Ironside JW, et al. Uptake and degradation of protease-sensitive and -resistant forms of abnormal human prion protein aggregates by human astrocytes. Am J Pathol. 2014;184(12):3299–3307.
  • Hollister JR, Lee KS, Dorward DW, et al. Efficient uptake and dissemination of scrapie prion protein by astrocytes and fibroblasts from adult hamster brain. PLOS ONE. 2015;10(1):e0115351.
  • Jeffrey M, McGovern G, Makarava N, et al. Pathology of SSLOW, a transmissible and fatal synthetic prion protein disorder, and comparison with naturally occurring classical transmissible spongoform encephalopathies. NeuropathApplNeurobiol. 2014;40(3):296–310.
  • Zeisel A, Hochgerner H, Lonnerberg P, et al. Molecular architecture of the mouse nervous system. Cell. 2018;174(4):999–1014.
  • Bayraktar OA, Bartels T, Holmqvist S, et al. Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map. Nat Neurosci. 2020 Apr;23(4):500–509.
  • Batiuk MY, Martirosyan A, Wahis J, et al. Identification of region-specific astrocyte subtypes at single cell resolution. Nat Commun. 2020 Mar 5;11(1):1220.
  • Makarava N, Chang JC-Y, Baskakov IV. Region-specific sialylation pattern of prion strains provides novel insight into prion neurotropism. Int J Mol Sci. 2020;21(3):828.
  • Karapetyan YE, Saa P, Mahal SP, et al. Prion strain discrimination based on rapid in vivo amplification and analysis by the cell panel assay. PLoS One. 2009;4(5):e5730.
  • Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481–487.
  • Carroll JA, Race B, Williams K, et al. Microglia are critical in host defense against prion disease. J Virol. 2018;92(15):e00549–18.
  • Blanco-Suárez E, Caldwell AL, Allen NJ. Role of astrocyte-synapse interactions in CNS disorders. J Physiol. 2017 Mar 15;595(6):1903–1916.
  • Marella M, Chabry J. Neurons and astrocytes respond to prion infection by inducing microglia recruitment. J Neurosci. 2004 Jan 21;24(3):620–627.
  • Vainchtein ID, Chin G, Cho FS, et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science. 2018 Mar 16;359(6381):1269–1273.
  • Rothaug M, Becker-Pauly C, Rose-John S. The role of interleukin-6 signaling in nervous tissue. Biochim Biophys Acta, Mol Cell Res. 2016 Jun 1;1863(6, Part A):1218–1227.
  • Ben Haim L, Ceyzériat K, Carrillo-de Sauvage MA, et al. The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer’s and Huntington’s diseases. J Neurosci. 2015 Feb 11;35(6):2817–2829.
  • Sun D, Qu J, Jakobs TC. Reversible reactivity by optic nerve astrocytes. Glia. 2013 Aug;61(8):1218–1235.
  • Hara M, Kobayakawa K, Ohkawa Y, et al. Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin–N-cadherin pathway after spinal cord injury. Nat Med. 2017 Jul 1;23(7):818–828.
  • Yan Z, Gibson SA, Buckley JA, et al. Role of the JAK/STAT signaling pathway in regulation of innate immunity in neuroinflammatory diseases. Clin Immunol. 2018 Apr;189:4–13.
  • Ceyzériat K, Ben Haim L, Denizot A, et al. Modulation of astrocyte reactivity improves functional deficits in mouse models of Alzheimer’s disease. Acta Neuropathol Commun. 2018 Oct 16;6(1):104.
  • Reichenbach N, Delekate A, Plescher M, et al. Inhibition of Stat3-mediated astrogliosis ameliorates pathology in an Alzheimer’s disease model. EMBO Mol Med. 2019;11(2):Feb.
  • Na Y-J, Jin J-K, Kim J-I, et al. JAK-STAT signaling pathway mediates astrogliosis in brains of scrapie-infected mice. J Neurochem. 2007;103(2):637–649.
  • Lasmézas CI, Deslys JP, Demaimay R, et al. Strain specific and common pathogenic events in murine models of scrapie and bovine spongiform encephalopathy. J Gen Virol. 1996 Jul;77(Pt 7):1601–1609.
  • Diedrich JF, Bendheim PE, Kim YS, et al. Scrapie-associated prion protein accumulates in astrocytes during scrapie infection. ProcNatlAcadSciUSA. 1991;88:375–379.
  • Jen A, Parkyn CJ, Mootoosamy RC, et al. Neuronal low density lipoprotein receptor-related protein 1 binds and endocytoses infectious fibrils via receptor cluster 4. J Cell Sci. 2010;123(2):246–255.
  • Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity. Nat Rev Immunol. 2013 Sep;13(9):621–634.
  • Chung WS, Clarke LE, Wang GX, et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature. 2013 Dec 19;504(7480):394–400.
  • Srivastava S, Katorcha E, Makarava N, et al. Inflammatory response of microglia to prions is controlled by sialylation of PrPSc. Sci Rep. 2018;8(1):e11326.
  • Katorcha E, Makarava N, Savtchenko R, et al. Sialylation of prion protein controls the rate of prion amplification, the cross-species barrier, the ratio of PrPSc glycoform and prion infectivity. PLOS Pathog. 2014;10(9):e1004366.
  • Baskakov IV, Katorcha E. Multifaceted role of sialylation in prion diseases. Front Neurosci. 2016;10(1):e358.
  • Katorcha E, Makarava N, Savtchenko R, et al. Sialylation of the prion protein glycans controls prion replication rate and glycoform ratio. Sci Rep. 2015;5(1):16912.
  • Srivastava S, Makarava N, Katorcha E, et al. Post-conversion sialylation of prions in lymphoid tissues. Proc Acad Natl Sci USA. 2015;112(48):E6654–6662.
  • Baskakov IV, Katorcha E. Prion Strain-specific structure and pathology: a view from the perspective of glycobiology. Viruses. 2018;10(12):723.