2,478
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

Preventive pharmacological treatment in subjects at risk for fatal familial insomnia: science and public engagement

, , , , , , , , , , , , , , & show all
Pages 66-77 | Received 22 Feb 2022, Accepted 24 May 2022, Published online: 23 Jun 2022

References

  • Cracco L, Appleby BS, Gambetti P. Fatal familial insomnia and sporadic fatal insomnia. Handb Clin Neurol. 2018;2018(153):271–299.
  • Forloni G, Roiter I, Tagliavini F. Clinical trials of prion disease therapeutics. Curr Opin Pharmacol. 2019;44:53–60.
  • Forloni G, Tettamanti M, Lucca U, et al. study in subjects at risk of fatal familial insomnia: innovative approach to rare diseases. Prion. 2015;9:75–79.
  • Monaco L, Faccio L. Patient-driven search for rare disease therapies: the Fondazione Telethon success story and the strategy leading to Strimvelis. EMBO Mol Med. 2017;(2017)(9):289–292.
  • Minikel EV, Vallabh SM, Orseth MC, et al. Age at onset in genetic prion disease and the design of preventive clinical trials. Neurology. 2019;93:e125–e134.
  • Lugaresi E, Medori R, Montagna P, et al. Fatal familial insomnia and dysautonomia with selective degeneration of thalamic nuclei. N Engl J Med. 1986;315:997–1003.
  • Lugaresi A, Baruzzi A, Cacciari E, et al. Lack of vegetative and endocrine orcadian rhythms in fatal familial thalamic degeneration. Clin Endocrinol (Oxf). 1987;26(5):573–580.
  • Tateishi J, Brown P, Kitamoto T, et al. First experimental transmission of fatal familial insomnia. Nature. 1995;376:434–435.
  • Medori R, Tritschler HJ, LeBlanc A, et al. Fatal familial insomnia, a prion disease with a mutation at codon 178 of the prion protein gene. N Engl J Med. 1992;326:444–449.
  • Medori R, Montagna P, Tritschler HJ, et al. Fatal familial insomnia: a second kindred with mutation of prion protein gene at codon 178. Neurology. 1992;42(3):669–670.
  • Büeler H, Aguzzi A, Sailer A, et al. Mice devoid of PrP are resistant to scrapie. Cell. 1993;73(7):1339–1347.
  • Prusiner SB, Scott MR, De Armond SJ, et al. Prion protein biology. Cell. 1998;93:337–348.
  • Cortelli P, Gambetti P, Montagna P, et al. Fatal familial insomnia: clinical features and molecular genetics. J Sleep Res. 1999;8(Suppl 1):23–29.
  • Restelli E, Capone V, Pozzoli M, et al. Chiesa R. Activation of Src family kinase ameliorates secretory trafficking in mutant prion protein cells. J Biol Chem. 2021;296:100490.
  • Tagliavini F, Forloni G, Colombo L, et al. Tetracycline affects abnormal properties of synthetic PrP peptides and PrP(Sc) in vitro. J Mol Biol. 2000;300:1309–1322.
  • Forloni G, Iussich S, Awan T, et al. Tetracyclines affect prion infectivity. Proc Natl Acad Sci U S A. 2002;99:10849–10854.
  • De Luigi A, Colombo L, Diomede L, et al. The efficacy of tetracyclines in peripheral and intracerebral prion infection. PLoS One. 2008;3:e1888.
  • Lucchetti J, Fracasso C, Balducci C, et al. Plasma and brain concentrations of doxycycline after single and repeated doses in wild-type and APP23 mice. J Pharmacol Exp Ther. 2019;368:32–40.
  • Airoldi C, Colombo L, Manzoni C, et al. Tetracycline prevents Aβ oligomer toxicity through an atypical supramolecular interaction. Org Biomol Chem. 2011;9:463–472.
  • Forloni G, Salmona M, Marcon G, et al. Tetracyclines and prion infectivity. Infect Disord Drug Targets. 2009;9:23–30.
  • Balducci C, Forloni G. Doxycycline for Alzheimer’s disease: fighting β-amyloid oligomers and neuroinflammation. Front Pharmacol. 2019;10:738.
  • Balducci C, Santamaria G, La Vitola P, et al. Doxycycline counteracts neuroinflammation restoring memory in Alzheimer’s disease mouse models. Neurobiol Aging. 2018;70:128–139.
  • Bortolanza M, Nascimento GC, Socias SB, et al. Tetracycline repurposing in neurodegeneration: focus on Parkinson’s disease. J Neural Transm (Vienna). 2018;125:1403–1415.
  • Paldino E, Balducci C, La Vitola P, et al. Neuroprotective effects of doxycycline in the R6/2 mouse model of huntington’s disease. Mol Neurobiol. 2020;57:1889–1903.
  • Tagliavini F.Prion Therapy: tetracyclic compounds in animal models and patients with Creutzfeldt-Jakob disease. Alzheimers Dement. 2008;4(5s): T149–150. abs
  • Varges D, Manthey H, Heinemann U, et al. Doxycycline in early CJD: a double-blinded randomised phase II and observational study. J Neurol Neurosurg Psychiatry. 2017;88:119–125.
  • Haïk S, Marcon G, Mallet A, et al. Doxycycline in Creutzfeldt-Jakob disease: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2014;13:150–158.
  • Pagès F, Boutin JP, Meynard JB, et al. Tolerability of doxycycline monohydrate salt vs. chloroquine-proguanil in malaria chemoprophylaxis. Trop Med Int Health. 2002;7:919–924.
  • Naini AE, Harandi AA, Moghtaderi J, et al. Doxycycline: a pilot study to reduce diabetic proteinuria. Am J Nephrol. 2007;27: 269–7.
  • Babaeinejad S, Khodaeiani E, Fouladi RF. Comparison of therapeutic effects of oral doxycycline and azithromycin in patients with moderate acne vulgaris: what is the role of age? J Dermatolog Treat. 2011;22:206–210.
  • Orrú CD, Bongianni M, Tonoli G, et al. A test for Creutzfeldt-Jakob disease using nasal brushings. N Engl J Med. 2014;371:519–529.
  • Zanusso G, Monaco S, Pocchiari M, et al. Advanced tests for early and accurate diagnosis of Creutzfeldt-Jakob disease. Nat Rev Neurol. 2016;12:325–333.
  • Saborio GP, Permanne B, Soto C. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature. 2001;411:810–813.
  • Whilam JM, Orrú CD, Bessen RA, et al. Rapid end-point quantitation of prion seeding activity with sensitivity comparable to bioassays. PLoS Pathog. 2010;6:e1001217.
  • Redaelli V, Bistaffa E, Zanusso G, et al. Detection of prion seeding activity in the olfactory mucosa of patients with Fatal Familial Insomnia. Sci Rep. 2017;7:46269.
  • Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 2016;537:50–56.
  • Frontzek K, Carta M, Losa M, et al. Autoantibodies against the prion protein in individuals with PRNP mutations. Neurology. 2020;95:e2028–e2037.
  • Heppner FL, Musahl C, Arrighi I, et al. Prevention of scrapie pathogenesis by transgenic expression of anti-prion protein antibodies. Science. 2001;294:178–182.
  • White AR, Enever P, Tayebi M, et al. Monoclonal antibodies inhibit prion replication and delay the development of prion disease. Nature. 2003;422:80–83.
  • Park S, Mostoslavsky G. Generation of human induced pluripotent stem cells using a defined, feeder‐free reprogramming system. Curr Protoc Stem Cell Biol. 2018;45(1):e48.
  • Sommer AG, Rozelle SS, Sullivan S, et al. Generation of human induced pluripotent stem cells from peripheral blood using the STEMCCA lentiviral vector. J Vis Exp. 2012;31;(68:4327.
  • Shi Y, Kirwan P, Livesey FJ. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc. 2012;7:836–846.
  • Hawton A, Green C, Goodwin E, Harrower T. Health state utility values (QALY weights) for Huntington's disease: an analysis of data from the European Huntington's Disease Network (EHDN). Eur J Health Econ. 2019; 20:1335–1347. http://www.ehdn.org/.
  • MacLeod R, Tibben A, Frontali M, et al. Recommendations for the predictive genetic test in Huntington’s disease. Clin Genet. 2013;83:221–231.
  • Craufurd D, MacLeod R, Frontali M, et al. Diagnostic genetic testing for Huntington’s disease. Pract Neurol. 2015;15:80–84.
  • Decruyenaere M, Evers-Kiebooms G, Boogaerts A, et al. Predictive testing for Huntington’s disease: risk perception, reasons for testing and psychological profile of test applicants. Genet Couns. 1995;6:1–13.
  • Decruyenaere M, Evers-Kiebooms G, Boogaerts A, et al. Psychological functioning before predictive testing for Huntington’s disease: the role of the parental disease, risk perception, and subjective proximity of the disease. J Med Genet. 1999;36:897–905.
  • Colesso W. Produced and spontaneous emergent interactionism. In: L’Abate L, editor. Paradigms in theory construction. New York: Spinger-Science; 2010. p. 375–396.
  • L’Abate L. In search of a relational theory. Am Psychol. 2009;64:779–788.
  • Hélaine A, Podevin M. The role of patients’ associations. Bull Cancer. 2020;107:381–384.
  • Rach C, Lukas J, Müller R. Involving patient groups in drug research: a systematic review of reasons. Patient Prefer Adherence. 2020;14:587–597.
  • Cavaller-Bellaubi M, Faulkner SD, Teixeira B, et al. Meaningful patient engagement across the lifecycle of medicines: a roadmap for action. Ther Innov Regul Sci. 2021;55:936–953.
  • Elwyn G, Durand MA, Song J, et al. A three-talk model for shared decision making: multistage consultation process. Bmj. 2017;359:j4891.
  • Magalang UJ, Chen NH, Cistulli PA, et al.; SAGIC Investigators. Agreement in the scoring of respiratory events and sleep among international sleep centers. Sleep. 2013;36:591–596.
  • Ruehland WR, O’Donoghue FJ, Pierce RJ, et al. The 2007 AASM recommendations for EEG electrode placement in polysomnography: impact on sleep and cortical arousal scoring. Sleep. 2011;34:73–81.