1,064
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Variability in prion protein genotypes by spatial unit to inform susceptibility to chronic wasting disease

ORCID Icon, , , & ORCID Icon
Pages 254-264 | Received 05 Apr 2022, Accepted 22 Aug 2022, Published online: 14 Sep 2022

References

  • Westemeier RL, Brawn JD, Simpson SA, et al. Tracking the long-term decline and recovery of an isolated population. Science. 1998;282(5394):1695–1698.
  • Spielman D, Brook BW, Briscoe DA, et al. Does inbreeding and loss of genetic diversity decrease disease resistance? Conserv Genet. 2004;5(4):439–448.
  • Hogg JT, Forbes SH, Steele BM, et al. Genetic rescue of an insular population of large mammals. Proc R Soc B Biol Sci. 2006;273(1593):1491–1499.
  • Giglio RM, Ivy JA, Jones LC, et al. Evaluation of alternative management strategies for maintenance of genetic variation in wildlife populations. Anim Conserv. 2016;19(4):380–390.
  • Madsen T, Shine R, Olsson M, et al. Restoration of an inbred adder population. Nature. 1999;402(6757):34–35.
  • Slate J, Kruuk LEB, Marshall TC, et al. Inbreeding depression influences lifetime breeding success in a wild population of red deer (Cervus elaphus). Proc R Soc Lond B Biol Sci. 2000;267(1453):1657–1662.
  • Höglund J, Piertney SB, Alatalo RV, et al. Inbreeding depression and male fitness in black grouse. Proc R Soc Lond B Biol Sci. 2002;269(1492):711–715.
  • Coltman DW, Bowen WD, Wright JM. Birth weight and neonatal survival of harbour seal pups are positively correlated with genetic variation measured by microsatellites. Proc R Soc Lond B Biol Sci. 1998;265(1398):803–809.
  • Isomursu M, Rätti O, Liukkonen T, et al. Susceptibility to intestinal parasites and juvenile survival are correlated with multilocus microsatellite heterozygosity in the Capercaillie (Tetrao urogallus). Ornis Fennica. 2012;89(2):109–119.
  • Monello RJ, Galloway NL, Powers JG, et al. Pathogen-mediated selection in free-ranging elk populations infected by chronic wasting disease. Proc Natl Acad Sci. 2017;114(46):12208–12212.
  • O’Rourke KI, Besser TE, Miller MW, et al. PrP genotypes of captive and free-ranging Rocky Mountain elk (Cervus elaphus nelsoni) with chronic wasting disease. J Gen Virol. 1999;80(10): 2765–2679. DOI:10.1099/0022-1317-80-10-2765.
  • Williams ES. Chronic wasting disease. Vet Pathol. 2005;42(5):530–549.
  • Robinson SJ, Samuel MD, O’Rourke KI, et al. The role of genetics in chronic wasting disease of North American cervids. Prion. 2012;6(2):153–162.
  • Williams ES, Young S. Chronic wasting disease of captive mule deer: a spongiform encephalopathy. J Wildl Dis. 1980;16(1):89–98.
  • Williams ES, Young S. Neuropathology of chronic wasting disease of mule deer (Odocoileus hemionus) and Elk (Cervus elaphus nelsoni). Vet Pathol. 1993;30(1):36–45.
  • Sigurdson CJ, Barillas-Mury C, Miller MW, et al. PrPCWD lymphoid cell targets in early and advanced chronic wasting disease of mule deer. J Gen Virol. 2002;83(10):2617–2628.
  • Carlson CM, Hopkins MC, Nguyen NT, et al. Chronic wasting disease—Status, science, and management support by the U.S. Geological survey. Reston, VA: U.S. Geological Survey; 2018. Accessed 01 Oct 2021. https://pubs.er.usgs.gov/publication/ofr20171138
  • Saunders SE, Bartelt-Hunt SL, Bartz JC. Occurrence, transmission, and zoonotic potential of chronic wasting disease. Emerg Infect Dis. 2012;18(3):369–376.
  • Edmunds DR, Kauffman MJ, Schumaker BA, et al. Chronic wasting disease drives population decline of white-tailed deer. PLOS ONE. 2016;11(8):e0161127.
  • Rivera NA, Brandt AL, Novakofski JE, et al. Chronic wasting disease in cervids: prevalence, impact and management strategies. Vet Med Res Rep. 2019;10:123–139.
  • DeVivo MT, Edmunds DR, Kauffman MJ, et al. Endemic chronic wasting disease causes mule deer population decline in Wyoming. PLOS ONE. 2017;12(10):e0186512.
  • Jewell JE, Conner MM, Wolfe LL, et al. Low frequency of PrP genotype 225SF among free-ranging mule deer (Odocoileus hemionus) with chronic wasting disease. J Gen Virol. 2005;86(8):2127–2134.
  • Haley NJ, Merrett K, Stein AB, et al. Estimating relative CWD susceptibility and disease progression in farmed white-tailed deer with rare PRNP alleles. PLOS ONE. 2019;14(12):e0224342.
  • White SN, Spraker TR, Reynolds JO, et al. Association analysis of PRNP gene region with chronic wasting disease in Rocky Mountain elk. BMC Res Notes. 2010;3(1):1–7.
  • Johnson C, Johnson J, Vanderloo JP, et al. Prion protein polymorphisms in white-tailed deer influence susceptibility to chronic wasting disease. J Gen Virol. 2006;87(7):2109–2114.
  • Johnson CJ, Herbst A, Duque-Velasquez C, et al. Prion protein polymorphisms affect chronic wasting disease progression. PLOS ONE. 2011;6(3):e17450.
  • Brandt AL, Green ML, Ishida Y, et al. Influence of the geographic distribution of prion protein gene sequence variation on patterns of chronic wasting disease spread in white-tailed deer (Odocoileus virginianus). Prion. 2018;12(3–4):204–215.
  • Hamir AN, Gidlewski T, Spraker TR, et al. Preliminary observations of genetic susceptibility of elk (Cervus elaphus nelsoni) to chronic wasting disease by experimental oral inoculation. J Vet Diagn Invest. 2006;18(1):110–114.
  • Green KM, Browning SR, Seward TS, et al. The elk PRNP codon 132 polymorphism controls cervid and scrapie prion propagation. J Gen Virol. 2008;89(2):598–608.
  • Perucchini M, Griffin K, Miller MW, et al. PrP genotypes of free-ranging wapiti (Cervus elaphus nelsoni) with chronic wasting disease. J Gen Virol. 2008;89(5):1324–1328.
  • Monello RJ, Powers JG, Hobbs NT, et al. Survival and population growth of a free-ranging elk population with a long history of exposure to chronic wasting disease. J Wildl Manag. 2014;78(2):214–223.
  • Eveland J, George J, Hunter N, et al. A preliminary evaluation of the ecology of the elk in Pennsylvania. In: Boyce MS, Hayden-Wing LDeditors. North American elk: ecology, behavior, and management. Laramie: University of Wyoming; 1979. p. 145–151.
  • Popp JN, Toman T, Mallory FF, et al. A century of elk restoration in eastern North America. Restor Ecol. 2014;22(6):723–730.
  • Banfield J, Rosenberry C. Elk management plan 2020-2025. Harrisburg (PA): Pennsylvania Game Commission; 2020.
  • Lenney Williams C, Serfass TL, Cogan R, et al. Microsatellite variation in the reintroduced Pennsylvania elk herd. Mol Ecol. 2002;11(8):1299–1310.
  • Evans TS, Schuler KL, Walter WD. Surveillance and monitoring of white-tailed deer for chronic wasting disease in the northeastern United States. J Fish Wildl Manag. 2014;5(2):387–393.
  • Robinson SJ, Samuel MD, Johnson CJ, et al. Emerging prion disease drives host selection in a wildlife population. Ecol Appl. 2012;22(3):1050–1059.
  • Williams AL, Kreeger TJ, Schumaker BA. Chronic wasting disease model of genetic selection favoring prolonged survival in Rocky Mountain elk (Cervus elaphus). Ecosphere. 2014;5(5):1–10.
  • Wyoming Game and Fish Department - CWD Map [Internet]. Cheyenne (WY): Wyoming Game and Fish Department; [cited 2022 Mar 30]. Available from: https://wgfd.wyo.gov/Wildlife-in-Wyoming/More-Wildlife/Wildlife-Disease/CWD-in-Wyoming-Wildlife/CWD-Map
  • Switzer C, Griffin S 2020 CWD surveillance and public outreach efforts in South Dakota. Presented at: South Dakota Game, Fish and Parks Commission meeting; 2021 Apr 8–9; Pierre, SD.
  • Cheng YC, Hannaoui S, John TR, et al. Early and non-invasive detection of chronic wasting disease prions in elk feces by real-time quaking induced conversion. PLOS ONE. 2016;11(11):e0166187.
  • Plummer IH, Wright SD, Johnson CJ, et al. Temporal patterns of chronic wasting disease prion excretion in three cervid species. J Gen Virol. 2017;98(7):1932–1942.
  • Browning SR, Mason GL, Seward T, et al. Transmission of prions from mule deer and elk with chronic wasting disease to transgenic mice expressing cervid PrP. J Virol. 2004;78(23):13345–13350.
  • Hamir AN, Richt JA, Miller JM, et al. Experimental transmission of chronic wasting disease (CWD) of elk (Cervus elaphus nelsoni), white-tailed deer (Odocoileus virginianus), and mule deer (Odocoileus hemionus hemionus) to white-tailed deer by intracerebral route. Vet Pathol. 2008;45(3):297–306.
  • Sohn H-J, Mitchell G, Lee YH, et al. Experimental oral transmission of chronic wasting disease to sika deer (Cervus nippon). Prion. 2020;14(1):271–277.
  • Williams ES, Miller MW. Chronic wasting disease in deer and elk in North America. Rev Sci Tech Int Off Epizoot. 2002;21(2):305–316.
  • Chafin TK, Douglas MR, Martin BT, et al. Age structuring and spatial heterogeneity in prion protein gene (PRNP) polymorphism in white-tailed deer. Prion. 2020;14(1):238–248.
  • Jennelle C S, Walter W David, Crawford J, Rosenberry C S and Wallingford B D. (2022). Movement of white‐tailed deer in contrasting landscapes influences management of chronic wasting disease. J Wildl Manag, 10.1002/jwmg.22306
  • Sikes RS, Gannon WL. the animal care and use committee of the American society of mammalogists. Guidelines of the American society of mammalogists for the use of wild mammals in research. J Mammal. 2011;92(1):235–253.
  • O’Rourke KI, Spraker TR, Hamburg LK, et al. Polymorphisms in the prion precursor functional gene but not the pseudogene are associated with susceptibility to chronic wasting disease in white-tailed deer. J Gen Virol. 2004;85(5):1339–1346.
  • Kearse M, Moir R, Wilson A, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–1649.
  • R Core Team. R: a language and environment for statistical computing. In: Version 3.5. Vienna (Austria): R Foundation for Statistical Computing; 2018. http://www.R-project.org/
  • Miller WL, Walter WD, Hancock J. CWDPRNP: a tool for cervid prion sequence analysis in program R. Bioinformatics. 2017;33(19):3096–3097.
  • O’Rourke KI, Baszler TV, Miller JM, et al. Monoclonal antibody f89/160.1.5 defines a conserved epitope on the ruminant prion protein. J Clin Microbiol. 1998;36(6):1750–1755.
  • Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet. 2001;68(4):978–989.
  • Stephens M, Scheet P. Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet. 2005;76(3):449–462.
  • Brandt AL, Kelly AC, Green ML, et al. Prion protein gene sequence and chronic wasting disease susceptibility in white-tailed deer (Odocoileus virginianus). Prion. 2015;9(6):449–462.
  • Excoffier L, Laval G, Schneider S. Arlequin: an integrated software package for population genetics data analysis. Version 3.0. Computational and molecular population genetics lab (CMPG). Switzerland: Institute of Zoology, University of Berne; 2006.
  • Miller WL, Walter WD. Spatial heterogeneity of prion gene polymorphisms in an area recently infected by chronic wasting disease. Prion. 2019;13(1):65–76.
  • Florin AB, Höglund J. Absence of population structure of turbot (Psetta maxima) in the Baltic Sea. Mol Ecol. 2007;16(1):115–126.
  • Fedy BC, Martin K, Ritland C, et al. Genetic and ecological data provide incongruent interpretations of population structure and dispersal in naturally subdivided populations of white-tailed ptarmigan (Lagopus leucura). Mol Ecol. 2008;17(8):1905–1917.
  • Clark PJ, Evans FC. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology. 1954;35(4):445–453.
  • Evans J. spatialEco, R package. Version 1.3-4. 2020.