3,304
Views
0
CrossRef citations to date
0
Altmetric
Review

Prion therapeutics: Lessons from the past

, ORCID Icon &
Pages 265-294 | Received 09 Jul 2022, Accepted 02 Nov 2022, Published online: 14 Dec 2022

References

  • Bendheim P, Brown HR, Rudelli RD, et al. Nearly ubiquitous tissue distribution of the scrapie agent precursor protein. Neurology. 1992;42(1): 149-149. DOI:10.1212/WNL.42.1.149.
  • Prusiner SB, McKinley MP, Bowman KA, et al. Scrapie prions aggregate to form amyloid-like birefringent rods. Cell. 1983;35(2):349–358.
  • Riek R, Hornemann, S, Wider G, Glockshuber R, Wüthrich K. NMR characterization of the full-length recombinant murine prion protein, mPrP (23–231). FEBS letters 08 181997. doi:10.1016/S0014-5793(97)00920-4.
  • Pan KM, Baldwin M, Nguyen J, et al. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proceedings of the National Academy of Sciences (PNAS), USA, 1993. Vols. 90(23): p. 10962–10966.
  • Caughey B, Kocisko DA, Raymond GJ, et al. Aggregates of scrapie-associated prion protein induce the cell-free conversion of protease-sensitive prion protein to the protease-resistant state. Chem Biol. 1995;2(12):807–817.
  • Colby DW, Prusiner SB. Prions. Cold Spring Harb Perspect Biol. 2011;3(1):a006833.
  • Silveira JR, Raymond GJ, Hughson AG, et al. The most infectious prion protein particles. Nature. 2005;437(7056):257–261.
  • Heikenwalder M, Julius C, Aguzzi A. Prions and peripheral nerves: a deadly rendezvous. J Neurosci Res. 2007;85(12):2714–2725.
  • Glatzel M. Sympathetic prions. The Scientific World JOURNAL. 2001;1:555–556.
  • Aguzzi A. Prions and the immune system: a journey through gut, spleen, and nerves. Adv Immunol. 2003;81:123–172.
  • Costa PP, Figueira AS, Bravo FR, Amyloid fibril protein related to prealbumin in familial amyloidotic polyneuropathy. Proceedings of the National Academy of Sciences (PNAS), USA, 1978. Vols. 75(9): p. 4499–4503.
  • Mead S, Reilly MM. A new prion disease: relationship with central and peripheral amyloidoses. Nat Rev Neurol. 2015;11(2):90–97.
  • Chen C, Dong X-P. Epidemiological characteristics of human prion diseases. Infect Dis Poverty. 2016;5(1):1–10.
  • Mead S, Khalili-Shirazi A, Potter C, et al. Prion protein monoclonal antibody (PRN100) therapy for Creutzfeldt–Jakob disease: evaluation of a first-in-human treatment programme. Lancet Neurol. 2022;21(4):342–354.
  • Chen C, Wang J-C, Shi Q, et al. Analyses of the survival time and the influencing factors of Chinese patients with prion diseases based on the surveillance data from 2008–2011. PLoS One. 2013;8(5):e62553.
  • Nagoshi K, Sadakane A, Nakamura Y, et al. Duration of prion disease is longer in Japan than in other countries. J Epidemiol. 2011; 1105250231-1105250231.
  • Zerr I, Kallenberg K, Summers DM, et al. Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease. Brain. 2009;132(10):2659–2668.
  • Kulanthaivelu K, Sinha S. EEG observations in probable sporadic CJD. Ann Indian Acad Neurol. 2020;23(6):761.
  • Matsubayashi T, Akaza M, Hayashi Y, et al. Focal sharp waves are a specific early-stage marker of the MM2-cortical form of sporadic Creutzfeldt-Jakob disease. Prion. 2020;14(1):207–213.
  • Zerr I, Bodemer M, Gefeller O, et al. Detection of 14-3-3 protein in the cerebrospinal fluid supports the diagnosis of Creutzfeldt-Jakob disease. Ann Neurol. 1998;43(1):32–40.
  • Atarashi R, Satoh K, Sano K, et al. Ultrasensitive human prion detection in cerebrospinal fluid by real-time quaking-induced conversion. Nat Med. 2011;17(2):175–178.
  • Orrú CD, Groveman BR, Hughson AG, et al. Rapid and sensitive RT-QuIC detection of human Creutzfeldt-Jakob disease using cerebrospinal fluid. MBio. 2015;6(1)
  • Meer B, Kallenberg K, Sanchez-Juan P, et al. MRI and clinical syndrome in dura materrelated Creutzfeldt-Jakob disease. J Neurol. 2009;256(3):355–363.
  • Zafar S, Noor A, Zerr I. Therapies for prion diseases. Handb Clin Neurol. 2019;165:47–58.
  • De Vries K, Cousins E, Dening KH. Palliative care in Creutzfeldt-Jakob disease: looking back, thinking ahead. BMJ Support Palliat Care. 2021; DOI:10.1136/bmjspcare-2020-002799
  • Legname G, Giachin G, Benetti F. Structural studies of prion proteins and prions, in non-fibrillar amyloidogenic protein assemblies-common cytotoxins underlying degenerative diseases. Dordrecht: Springer; 2012. p. 289–317.
  • Zhang Y, Ge B, Duncan I. Restriction fragment length polymorphism linkage map for Arabidopsis thaliana. Proc Natl Acad Sci USA. 1988;85(18):6856. 2000
  • Walter ED, Stevens DJ, Spevacek AR, et al. Copper binding extrinsic to the octarepeat region in the prion protein. Current Protein Pept Sci. 2009;10(5):529–535.
  • Walter ED, Chattopadhyay M, Millhauser GL. The affinity of copper binding to the prion protein octarepeat domain:  evidence for negative cooperativity. Biochemistry. 2006;45(43):13083–13092.
  • Kuwata K, Matumoto T, Cheng H, et al. NMR-detected hydrogen exchange and molecular dynamics simulations provide structural insight into fibril formation of prion protein fragment 106–126. Proceedings of the National Academy of Sciences (PNAS), USA, 2003. Vols.100(25): p. 14790–14795.
  • Migliorini C, Sinicropi A, Kozlowski H, et al. Copper-induced structural propensities of the amyloidogenic region of human prion protein. J Biol Inorg Chem. 2014;19(4–5):635–645.
  • Giachin G, Mai PT, Tran TH, et al. The non-octarepeat copper binding site of the prion protein is a key regulator of prion conversion. Sci Rep. 2015;5(1):1–14.
  • Salzano G, Brennich M, Mancini G, et al. Deciphering copper coordination in the mammalian prion protein amyloidogenic domain. Biophys J. 2020;118(3):676–687.
  • Lansbury PT. Mechanism of scrapie replication. Science. 1994;265(5178): 1510-1510.
  • Sigurdson CJ, Bartz JC, Glatzel M. Cellular and molecular mechanisms of prion disease. Annu Rev Pathol. 2019;14(1):497–516.
  • Harris DA. Cell biological studies of the prion protein. Curr Issues Mol Biol. 1999;1(1–2):65–76.
  • Goold R, Rabbanian S, Sutton L, et al. Rapid cell-surface prion protein conversion revealed using a novel cell system. Nat Commun. 2011;2(1):1–11.
  • Kamatari YO, Hayano Y, Yamaguchi K-I, et al. Characterizing antiprion compounds based on their binding properties to prion proteins: implications as medical chaperones. Protein Sci. 2013;22(1):22–34.
  • Ghaemmaghami S, Ahn M, Lessard P, et al. Continuous quinacrine treatment results in the formation of drug-resistant prions. PLoS Pathog. 2009;5(11):e1000673.
  • Ghaemmaghami S, May BCH, Renslo AR, et al. Discovery of 2-aminothiazoles as potent antiprion compounds. J Virol. 2010;84(7):3408–3412.
  • Gallardo-Godoy A, Gever J, Fife KL, et al. 2-Aminothiazoles as therapeutic leads for prion diseases. J Med Chem. 2011;54(4):1010–1021.
  • Berry D, Giles K, Oehler A, et al. Use of a 2-aminothiazole to treat chronic wasting disease in transgenic mice. J Infect Dis. 2015;212(suppl 1):S17–S25.
  • Giles K, Berry DB, Condello C, et al. Different 2-aminothiazole therapeutics produce distinct patterns of scrapie prion neuropathology in mouse brains. J Pharmacol Exp Ther. 2015;355(1):2–12.
  • Burke CM, Mark KMK, Kun J, et al. Emergence of prions selectively resistant to combination drug therapy. PLoS Pathog. 2020;16(5):e1008581.
  • Hyeon JW, Choi J, Kim S, et al. Discovery of novel anti-prion compounds using in silico and in vitro approaches. Sci Rep. 2015;5(1):1–11.
  • Hyeon JW, Noh R, Choi J, et al. BMD42-2910, a novel benzoxazole derivative, shows a potent anti-prion activity and prolongs the mean survival in an animal model of prion disease. Exp Neurobiol. 2020;29(1):93.
  • Kimura T, Hosokawa-Muto J, Asami K, et al. Synthesis of 9-substituted 2,3,4,9-tetrahydro-1H-carbazole derivatives and evaluation of their anti-prion activity in TSE-infected cells. Eur J Med Chem. 2011;46(11):5675–5679.
  • Kimura T, Sako T, Sakaguchi S, et al. Synthesis of an 11 C-labeled antiprion gn8 derivative and evaluation of its brain uptake by positron emission tomography. ChemMedChem. 2013;8(7):1035–1039.
  • Caughey WS, Raymond LD, Horiuchi M, et al., Inhibition of protease-resistant prion protein formation by porphyrins and phthalocyanines. Proceedings of the National Academy of Sciences (PNAS), USA., 1998. Vols.95(21): p. 12117–12122.
  • Priola SA, Raines A, Caughey WS. Porphyrin and phthalocyanine antiscrapie compounds. Science. 2000;287(5457):1503–1506.
  • Priola SA, Raines A, Caughey W. Prophylactic and therapeutic effects of phthalocyanine tetrasulfonate in scrapie-infected mice. J Infect Dis. 2003;188(5):699–705.
  • Kocisko DA, Caughey WS, Race RE, et al. A porphyrin increases survival time of mice after intracerebral prion infection. Antimicrob Agents Chemother. 2006;50(2):759–761.
  • Touil F, Pratt S, Mutter R, et al. Screening a library of potential prion therapeutics against cellular prion proteins and insights into their mode of biological activities by surface plasmon resonance. J Pharm Biomed Anal. 2006;40(4):822–832.
  • Wong CN, Xiong LW, Horiuchi M, et al. Sulfated glycans and elevated temperature stimulate PrPSc-dependent cell-free formation of protease-resistant prion protein. EMBO J. 2001;20(3):377–386.
  • Caughey WS, Priola SA, Kocisko DA, et al. Cyclic tetrapyrrole sulfonation, metals, and oligomerization in antiprion activity. Antimicrob Agents Chemother. 2007;51(11):3887–3894.
  • Nicoll AJ, Trevitt CR, Tattum MH, et al. Pharmacological chaperone for the structured domain of human prion protein. Proceedings of the National Academy of Sciences (PNAS), USA, 2010. Vols.107(41): p. 17610–17615.
  • Massignan T, Cimini S, Stincardini C, et al. A cationic tetrapyrrole inhibits toxic activities of the cellular prion protein. Sci Rep. 2016;6(1):1–14.
  • Rezajooei N, Cappellano TR, Tittle C. Studying the effects of anti-prion compounds on prp folding at the single-molecule level. Masters thesis, Spring 2017, University of Alberta, Canada, 2017;23(9):1376–1384. https://doi.org/10.7939/R3GF0N804
  • Frid P, Anisimov SV, Popovic N. Congo red and protein aggregation in neurodegenerative diseases. Brain Res Rev. 2007;53(1):135–160.
  • Espargaró Colomé A, Llabrés S, Saupe SJ, et al. On the binding of congo red to amyloid fibrils. Angewandte Chemie International Edition. 2020;59(21):8104–8107.
  • Supattapone S, Nguyen H. O. B, Cohen F. E. Elimination of prions by branched polyamines and implications for therapeutics. Proceedings of the National Academy of Sciences (PNAS), USA, 1999. Vols.96(25): p. 14529–14534.
  • Caspi S, Halimi M, Yanai A, et al. The anti-prion activity of Congo red: putative mechanism. J Biol Chem. 1998;273(6):3484–3489.
  • Caughey B, Brown K, Raymond GJ, et al. Binding of the protease-sensitive form of PrP (prion protein) to sulfated glycosaminoglycan and Congo red [corrected]. J Virol. 1994;68(4):2135–2141.
  • Caughey B, Race RE. Potent inhibition of Scrapie-associated prp accumulation by congo red. J Neurochem. 1992;59(2):768–771.
  • Corato M, Ogliari P, Ceciliani F, et al. Doxorubicin and Congo red effectiveness on prion infectivity in golden Syrian hamster. Anticancer Res. 2009;29(7):2507–2512.
  • Kawatake S, Nishimura Y, Sakaguchi S, et al. Surface plasmon resonance analysis for the screening of anti-prion compounds. Biol Pharm Bull. 2006;29(5):927–932.
  • Demaimay R, Chesebro B, Caughey B. Prion Diseases. Vienna: Springer; 2000. Inhibition of formation of protease-resistant prion protein by trypan blue, sirius red and other congo red analogs; p. 277–283.
  • Bos R, Koopman JP, Theuws JLG, et al. The essential role of the intestinal flora in the toxification of orally administered benzidine-based dyes. Internal exposure of rats to benzidine after intestinal azo reduction. Mutat Res. 1987;181(2):327.
  • Ingrosso L, Ladogana A, Pocchiari M. Congo red prolongs the incubation period in scrapie-infected hamsters. J Virol. 1995;69(1):506–508.
  • Rudyk H, Birkett CR, Hennion RM, et al. Screening Congo Red and its analogues for their ability to prevent the formation of PrP-res in scrapie-infected cells. J Gen Virol. 2000;81(4):1155–1164.
  • Sellarajah S, Lekishvili T, Bowring C, et al. Synthesis of analogues of Congo red and evaluation of their anti-prion activity. J Med Chem. 2004;47(22):5515–5534.
  • Poli G, Martino PA, Villa S, et al. Evaluation of anti-prion activity of Congo red and its derivatives in experimentally infected hamsters. Arzneimittelforschung. 2004;54(7):406–415.
  • Kuwata K, Nishida N, Matsumoto T, et al. Hot spots in prion protein for pathogenic conversion. Proceedings of the National Academy of Sciences (PNAS), USA, 2007. Vols.104(29): p. 11921–11926.
  • Kimura T, Hosokawa-Muto J, Kamatari YO, et al. Synthesis of GN8 derivatives and evaluation of their antiprion activity in TSE-infected cells. Bioorg Med Chem Lett. 2011;21(5):1502–1507.
  • Hosokawa-Muto J, Kimura T, Kuwata K. Respiratory and cardiovascular toxicity studies of a novel antiprion compound, GN8, in rats and dogs. Drug Chem Toxicol. 2012;35(3):264–271.
  • Yamaguchi K, Kamatari YO, Ono F, et al. A designer molecular chaperone against transmissible spongiform encephalopathy slows disease progression in mice and macaques. Nat Biomed Eng. 2019;3(3):206–219.
  • Leidel F, Eiden M, Geissen M, et al. Diphenylpyrazole-derived compounds increase survival time of mice after prion infection. Antimicrob Agents Chemother. 2011;55(10):4774–4781.
  • Leidel F, Eiden M, Geissen M, et al. Piperazine derivatives inhibit PrP/PrPres propagation in vitro and in vivo. Biochem Biophys Res Commun. 2014;445(1):23–29.
  • Wagner J, Ryazanov S, Leonov A, et al. Anle138b: a novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson’s disease. Acta Neuropathol. 2013;125(6):795–813.
  • Guerrero-Muñoz MJ, Castillo-Carranza DL, Kayed R. Therapeutic approaches against common structural features of toxic oligomers shared by multiple amyloidogenic proteins. Biochem Pharmacol. 2014;88(4):468–478.
  • Matthes D, Gapsys V, Griesinger C, et al. Resolving the atomistic modes of Anle138b inhibitory action on peptide oligomer formation. ACS Chem Neurosci. 2017;8(12):2791–2808.
  • GmbH M A first-in-human study of single and multiple doses of anle138b in healthy subjects. NCT04208152 2020 2022 April 28]; Available from: https://clinicaltrials.gov/ct2/show/NCT04208152.
  • GmbH M A study to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of anle138b in parkinson’s disease. 2021 2022 April 28]; Available from: https://clinicaltrials.gov/ct2/show/results/NCT04685265?term=Anle138b&draw=2&rank=1&view=results.
  • Regelson W, Harkins S. “amyloid is not a tombstone”—A summation: the primary role for cerebrovascular and csf dynamics as factors in alzheimer’s disease (AD): DMSO, Fluorocarbon oxygen carriers, thyroid hormonal, and other suggested therapeutic measures. Ann N Y Acad Sci. 1997;826(1):348–374.
  • Shen CL, Murphy RM. Solvent effects on self-assembly of beta-amyloid peptide. Biophys J. 1995;69(2):640–651.
  • Shaked GM, Engelstein R, Avraham I, et al. Dimethyl sulfoxide delays PrPsc accumulation and disease symptoms in prion-infected hamsters. Brain Res. 2003;983(1–2):137–143.
  • Shaked GM, Fridlander G, Meiner Z, et al. Protease-resistant and detergent-insoluble prion protein is not necessarily associated with prion infectivity. J Biol Chem. 1999;274(25):17981–17986.
  • Tatzelt J, Prusiner SB, Welch WJ. Chemical chaperones interfere with the formation of scrapie prion protein. EMBO J. 1996;15(23):6363–6373.
  • Uchiyama K, Hara H, Chida J, et al. Ethanolamine Is a New Anti-Prion Compound. Int J Mol Sci. 2021;22(21):11742.
  • Calzada E, Onguka O, Claypool SM. Phosphatidylethanolamine Metabolism in Health and Disease. Int Rev Cell Mol Biol. 2016;321:29–88.
  • Deleault NR, Piro JR, Walsh DJ, et al. Isolation of phosphatidylethanolamine as a solitary cofactor for prion formation in the absence of nucleic acids. Proceedings of the National Academy of Sciences (PNAS), USA, 2012. Vols.109(22): p. 8546–8551.
  • Hoover CE, Davenport KA, Henderson DM, et al. Endogenous brain lipids inhibit prion amyloid formation in vitro. J Virol. 2017;91(9)
  • Baumer W, Hoppmann J, Rundfeldt C, et al. Highly selective phosphodiesterase 4 inhibitors for the treatment of allergic skin diseases and psoriasis. Inflammation & Allergy-Drug Targets (Formerly Current Drug Targets-Inflammation & Allergy)(Discontinued). 2007;6(1):17–26.
  • Wang T, Yin Z, Zhang Z, et al. Inhibitors of human immunodeficiency virus type 1 (HIV-1) attachment. 5. An evolution from indole to azaindoles leading to the discovery of 1-(4-benzoylpiperazin-1-yl)-2-(4, 7-dimethoxy-1 H-pyrrolo [2, 3-c] pyridin-3-yl) ethane-1, 2-dione (BMS-488043), a drug candidate that demonstrates antiviral activity in HIV-1-infected subjects. J Med Chem. 2009;52(23):7778–7787.
  • Oostendorp RL, Witteveen PO, Schwartz B, et al. Dose-finding and pharmacokinetic study of orally administered indibulin (D-24851) to patients with advanced solid tumors. Invest New Drugs. 2010;28(2):163–170.
  • Nicholls SJ, Cavender MA, Kastelein JJP, et al. Inhibition of secretory phospholipase A2 in patients with acute coronary syndromes: rationale and design of the vascular inflammation suppression to treat acute coronary syndrome for 16 weeks (Vista-16) trial. Cardiovasc Drugs Ther. 2012;26(1):71–75.
  • Thompson MJ, Borsenberger V, Louth JC, et al. Design, Synthesis, and Structure−Activity Relationship of Indole-3-glyoxylamide Libraries Possessing Highly Potent Activity in a Cell Line Model of Prion Disease. J Med Chem. 2009;52(23):7503–7511.
  • Thompson MJ, Louth JC, Ferrara S, et al. Structure-Activity Relationship Refinement and Further Assessment of Indole-3-glyoxylamides as a Lead Series against Prion Disease. ChemMedChem. 2011;6(1):115–130.
  • Thompson MJ, Louth JC, Ferrara S, et al. Discovery of 6-substituted indole-3-glyoxylamides as lead antiprion agents with enhanced cell line activity, improved microsomal stability and low toxicity. Eur J Med Chem. 2011;46(9):4125–4132.
  • Hong N, Choi Y-S, Kim SY, et al. Neuroprotective effect of lithium after pilocarpine-induced status epilepticus in mice. Korean J Physiol Pharmacol. 2017;21(1):125–131.
  • Pouladi MA, Brillaud E, Xie Y, et al. NP03, a novel low-dose lithium formulation, is neuroprotective in the YAC128 mouse model of Huntington disease. Neurobiol Dis. 2012;48(3):282–289.
  • Heiseke A, Aguib Y, Riemer C, et al. Lithium induces clearance of protease resistant prion protein in prion-infected cells by induction of autophagy. J Neurochem. 2009;109(1):25–34.
  • Pérez M, Rojo AI, Wandosell F, et al. Prion peptide induces neuronal cell death through a pathway involving glycogen synthase kinase 3. Biochem J. 2003;372(1):129–136.
  • Song Z, Yang W, Zhou X, et al. Lithium alleviates neurotoxic prion peptide-induced synaptic damage and neuronal death partially by the upregulation of nuclear target REST and the restoration of Wnt signaling. Neuropharmacology. 2017;123:332–348.
  • Gitlin M. Lithium side effects and toxicity: prevalence and management strategies. Int J Bipolar Disord. 2016;4(1):1–10.
  • Relaño-Ginés A, Lehmann S, Brillaud E, et al. Lithium as a disease-modifying agent for prion diseases. Transl Psychiatry. 2018;8(1):1–11.
  • Cavaliere P, Torrent J, Prigent S, et al. Binding of methylene blue to a surface cleft inhibits the oligomerization and fibrillization of prion protein. Biochim Biophys Acta Mol Basis Dis. 2013;1832(1):20–28.
  • Mori T, Koyama N, Segawa T, et al. Methylene blue modulates β-secretase, reverses cerebral amyloidosis, and improves cognition in transgenic mice. J Biol Chem. 2014;289(44):30303–30317.
  • Caughey B, Caughey WS, Kocisko DA, et al. Prions and Transmissible Spongiform Encephalopathy (TSE) Chemotherapeutics:  a Common Mechanism for Anti-TSE Compounds? Acc Chem Res. 2006;39(9):646–653.
  • Karpuj MV, Gelibter-Niv S, Tiran A, et al. Conditional modulation of membrane protein expression in cultured cells mediated by prion protein recognition of short phosphorothioate oligodeoxynucleotides. J Biol Chem. 2011;286(9):6911–6917.
  • Shyng S-L, Lehmann S, Moulder KL, et al. Sulfated glycans stimulate endocytosis of the cellular isoform of the prion protein, PrPC, in cultured cells. J Biol Chem. 1995;270(50):30221–30229.
  • Petrosyan R, Patra S, Rezajooei N, et al. Unfolded and intermediate states of PrP play a key role in the mechanism of action of an antiprion chaperone. Proceedings of the National Academy of Sciences (PNAS), USA, 2021. Vols.118(9).
  • Caughey B, Raymond GJ. Sulfated polyanion inhibition of scrapie-associated PrP accumulation in cultured cells. J Virol. 1993;67(2):643–650.
  • Diringer H, Ehlers B. Chemoprophylaxis of scrapie in mice. J Gen Virol. 1991;72(2):457–460.
  • Doh-Ura K, Ishikawa K, Murakami-Kubo I, et al. Treatment of transmissible spongiform encephalopathy by intraventricular drug infusion in animal models. J Virol. 2004;78(10):4999–5006.
  • Rouvinski A, Karniely S, Kounin M, et al. Live imaging of prions reveals nascent PrPSc in cell-surface, raft-associated amyloid strings and webs. J Cell Biol. 2014;204(3):423–441.
  • Yamaguchi S, Nishida Y, Sasaki K, et al. Inhibition of PrPSc formation by synthetic O-sulfated glycopyranosides and their polymers. Biochem Biophys Res Commun. 2006;349(2):485–491.
  • Yamasaki T, Suzuki A, Hasebe R, et al. Comparison of the anti-prion mechanism of four different anti-prion compounds, anti-PrP monoclonal antibody 44B1, pentosan polysulfate, chlorpromazine, and U18666A, in prion-infected mouse neuroblastoma cells. PLoS One. 2014;9(9):e106516.
  • Raymond GJ, Olsen EA, Lee KS, et al. Inhibition of protease-resistant prion protein formation in a transformed deer cell line infected with chronic wasting disease. J Virol. 2006;80(2):596–604.
  • Bone I, Belton L, Walker AS, et al. Intraventricular pentosan polysulphate in human prion diseases: an observational study in the UK. Eur J Neurol. 2008;15(5):458–464.
  • Tsuboi Y, Doh-ura K, Yamada T. Continuous intraventricular infusion of pentosan polysulfate: clinical trial against prion diseases. Neuropathology. 2009;29(5):632–636.
  • Honda H, Sasaki K, Minaki H, et al. Protease-resistant PrP and PrP oligomers in the brain in human prion diseases after intraventricular pentosan polysulfate infusion. Neuropathology. 2012;32(2):124–132.
  • Hyeon JW, Kim SY, Lee SM, et al. Anti-prion screening for acridine, dextran, and tannic acid using real time–quaking induced conversion: a comparison with PrPSc-infected cell screening. PLoS One. 2017;12(1):e0170266.
  • Fuse T, Nakagaki T, Homma T, et al. Dextran sulphate inhibits an association of prions with plasma membrane at the early phase of infection. Neurosci Res. 2021;171:34–40.
  • Ehlers B, Diringer H. Dextran sulphate 500 delays and prevents mouse scrapie by impairment of agent replication in spleen. J Gen Virol. 1984;65(8):1325–1330.
  • Farquhar C, Dickinson A. Prolongation of scrapie incubation period by an injection of dextran sulphate 500 within the month before or after infection. J Gen Virol. 1986;67(3):463–473.
  • Ladogana A, Casaccia P, Ingrosso L, et al. Sulphate polyanions prolong the incubation period of scrapie-infected hamsters. J Gen Virol. 1992;73(3):661–665.
  • Additives EPOF, Mortensen A, Aguilar F, Crebelli R, et al. Re‐evaluation of β‐cyclodextrin (E 459) as a food additive. EFSA J. 2016;14(12):e04628.
  • Prior M, Lehmann S, Sy M-S, et al. Cyclodextrins inhibit replication of scrapie prion protein in cell culture. J Virol. 2007;81(20):11195–11207.
  • McEvoy K, McMahon HE. Antiprion action of new cyclodextrin analogues. Biochim Biophys Acta. 2009;1790(10):1382–1386.
  • FDA, U. Celebrex (celecoxib) Information. 2015 2022 April 28]; Available from: https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/celebrex-celecoxib-information.
  • Villa V, Thellung S, Corsaro A, et al. Celecoxib inhibits prion protein 90-231-mediated pro-inflammatory responses in microglial cells. Mol Neurobiol. 2016;53(1):57–72.
  • AR-12. Study of AR-12 (2-Amino-N-[4-[5-(2 Phenanthrenyl)-3-(Trifluoromethyl)-1H-pyrazol-1-yl] Phenyl]-Acetamide) in Adult Patients With Advanced or Recurrent Solid Tumors or Lymphoma. 2014; [cited April 28, 2022], Available from: https://clinicaltrials.gov/ct2/show/NCT00978523
  • Abdulrahman BA, Abdelaziz D, Thapa S, et al. The celecoxib derivatives AR-12 and AR-14 induce autophagy and clear prion-infected cells from prions. Sci Rep. 2017;7(1):1–12.
  • Booth L, Roberts JL, Cruickshanks N, et al. Regulation of osu-03012 toxicity by ER stress proteins and ER stress–inducing drugs. Mol Cancer Ther. 2014;13(10):2384–2398.
  • Abdelaziz DH, Abdulrahman BA, Gilch S, et al. Autophagy pathways in the treatment of prion diseases. Curr Opin Pharmacol. 2019;44:46–52.
  • FDA, U., CHLORPROMAZINE HYDROCHLORIDE. 2021.
  • Korth C, May BCH, Cohen FE, et al. Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proceedings of the National Academy of Sciences (PNAS), USA, 2001. Vols.98(17): p. 9836–9841.
  • Baral PK, Swayampakula M, Rout M, et al. Structural basis of prion inhibition by phenothiazine compounds. Structure. 2014;22(2):291–303.
  • Barreca ML, Iraci N, Biggi S, et al. Pharmacological agents targeting the cellular prion protein. Pathogens. 2018;7(1):27.
  • Stincardini C, Massignan T, Biggi S, et al. An antipsychotic drug exerts anti-prion effects by altering the localization of the cellular prion protein. PloS one. 2017;12(8):e0182589.
  • Cronier S, Beringue V, Bellon A, et al. Prion Strain- and species-dependent effects of antiprion molecules in primary neuronal cultures. J Virol. 2007;81(24):13794–13800.
  • Daniel JA, Chau N, Abdel-Hamid MK, et al. Phenothiazine-derived antipsychotic drugs inhibit dynamin and clathrin-mediated endocytosis. Traffic. 2015;16(6):635–654.
  • Roikhel V, Fokina G, Pogodina V. Influence of aminasine on experimental scrapie in mice. Acta Virol. 1984;28(4):321–324.
  • Ali T, Hannaoui S, Nemani S, et al. Oral administration of repurposed drug targeting Cyp46A1 increases survival times of prion infected mice. Acta Neuropathol Commun. 2021;9(1):1–14.
  • Friedel HA, Fitton A. Flupirtine. Drugs. 1993;45(4):548–569.
  • Agency, E.M.,Assessment report for flupirtine containing medicinal products. 2013.
  • Schwarz M, Block F, Pergande G. N-methyl-D-aspartate (NMDA)-mediated muscle relaxant action of flupirtine in rats. Neuroreport. 1994;5(15):1981–1984.
  • Khosravani H, Zhang Y, Tsutsui S, et al. Prion protein attenuates excitotoxicity by inhibiting NMDA receptors. J Cell Biol. 2008;181(3):551–565.
  • Fang C, Wu B, Le NTT, et al. Prions activate a p38 MAPK synaptotoxic signaling pathway. PLoS Pathog. 2018;14(9):e1007283.
  • Perovic S, Pergande G, Ushijima H, et al. Flupirtine partially prevents neuronal injury induced by prion protein fragment and lead acetate. Neurodegeneration. 1995;4(4):369–374.
  • Otto M, Cepek L, Ratzka P, et al. Efficacy of flupirtine on cognitive function in patients with CJD: a double-blind study. Neurology. 2004;62(5):714–718.
  • Patil MA, Matter B, Raol Y, et al. Brain distribution and metabolism of flupirtine, a nonopioid analgesic drug with antiseizure effects, in neonatal rats. Pharmaceutics. 2018;10(4):281.
  • Schröder HC, Müller W. Neuroprotective effect of flupirtine in prion disease. Drugs Today (Barc). 2002;38(1):49–58.
  • FDA, U., Guanabenz. 1998.
  • Tribouillard-Tanvier D, Béringue V, Desban N, et al. Antihypertensive drug guanabenz is active in vivo against both yeast and mammalian prions. PloS one. 2008;3(4):e1981.
  • Sica DA. Centrally acting antihypertensive agents: an update. J Clin Hypertens. 2007;9(5):399–405.
  • Holmes B, Brogden RN, Heel RC, et al. Guanabenz A review of its pharmacodynamic properties and therapeutic efficacy in hypertension. Drugs. 1983;26(3):212–229.
  • Nguyen PH, Hammoud H, Halliez S, et al. Structure–activity relationship study around guanabenz identifies two derivatives retaining antiprion activity but having lost α2-adrenergic receptor agonistic activity. ACS Chem Neurosci. 2014;5(10):1075–1082.
  • FDA, U., Glimepride. 1995.
  • Bate C, Tayebi M, Diomede L, et al. Glimepiride reduces the expression of PrPC, prevents PrPSc formation and protects against prion mediated neurotoxicity. PLoS One. 2009;4(12):e8221.
  • Williams A, Van Dam AM, Ritchie D, et al. Immunocytochemical appearance of cytokines, prostaglandin E2 and lipocortin-1 in the CNS during the incubation period of murine scrapie correlates with progressive PrP accumulations. Brain Res. 1997;754(1–2):171–180.
  • Farooqui AA, Ong W-Y, Horrocks LA. Inhibitors of brain phospholipase A 2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol Rev. 2006;58(3):591–620.
  • Ingham V, Williams A, Bate C. Glimepiride reduces CD14 expression and cytokine secretion from macrophages. J Neuroinflammation. 2014;11(1):1–14.
  • [cited April 30, 2022]. Available from: https://www.medicines.org.uk/emc/medicine/25845#gref.
  • Ertmer A, Gilch S, Yun S-W, et al. The tyrosine kinase inhibitor STI571 induces cellular clearance of PrPSc in prion-infected cells. J Biol Chem. 2004;279(40):41918–41927.
  • López-Pérez Ó, Badiola JJ, Bolea R, et al. An update on autophagy in prion diseases. Front Bioeng Biotechnol. 2020;8:975.
  • Ertmer A, Huber V, Gilch S, et al. The anticancer drug imatinib induces cellular autophagy. Leukemia. 2007;21(5):936–942.
  • Advani D, Kumar P. Therapeutic Targeting of Repurposed Anticancer Drugs in Alzheimer’s Disease: using the Multiomics Approach. ACS omega. 2021;6(21):13870–13887.
  • Yun S-W, Ertmer A, Flechsig E, et al. The tyrosine kinase inhibitor imatinib mesylate delays prion neuroinvasion by inhibiting prion propagation in the periphery. J Neurovirol. 2007;13(4):328–337.
  • Ryou C, Legname G, Peretz D, et al. Differential inhibition of prion propagation by enantiomers of quinacrine. Lab Invest. 2003;83(6):837–843.
  • Barret A, Tagliavini F, Forloni G, et al. Evaluation of quinacrine treatment for prion diseases. J Virol. 2003;77(15):8462–8469.
  • Yung L, Huang Y, Lessard P, et al. Pharmacokinetics of quinacrine in the treatment of prion disease. BMC Infect Dis. 2004;4(1):1–7.
  • Vogtherr M, Grimme S, Elshorst B, et al. Antimalarial drug quinacrine binds to C-terminal helix of cellular prion protein. J Med Chem. 2003;46(17):3563–3564.
  • Murakami-Kubo I, Doh-ura K, Ishikawa K, et al. Quinoline derivatives are therapeutic candidates for transmissible spongiform encephalopathies. J Virol. 2004;78(3):1281–1288.
  • Klingenstein R, Lober S, Kujala P, et al. Tricyclic antidepressants, quinacrine and a novel, synthetic chimera thereof clear prions by destabilizing detergent-resistant membrane compartments. J Neurochem. 2006;98(3):748–759.
  • Collinge J, Gorham M, Hudson F, et al. Safety and efficacy of quinacrine in human prion disease (PRION-1 study): a patient-preference trial. Lancet Neurol. 2009;8(4):334–344.
  • Geschwind MD, Kuo AL, Wong KS, et al. Quinacrine treatment trial for sporadic Creutzfeldt-Jakob disease. Neurology. 2013;81(23):2015–2023.
  • Haik S, Brandel JP, Salomon D, et al. Compassionate use of quinacrine in Creutzfeldt–Jakob disease fails to show significant effects. Neurology. 2004;63(12):2413–2415.
  • Huang Y, Okochi H, May BCH, et al. Quinacrine is mainly metabolized to mono-desethyl quinacrine by CYP3A4/5 and its brain accumulation is limited by P-glycoprotein. Drug Metab Dispos. 2006;34(7):1136–1144.
  • Kwak J-Y, Kim H, Kim JA, et al. Efficacy and safety of radotinib compared with imatinib in newly diagnosed chronic phase chronic myeloid leukemia patients: 12 months result of phase 3 clinical trial. Blood. 2015;126(23):476.
  • Trials C. Safety, Tolerability, Pharmacokinetics and efficacy study of radotinib in parkinson’s disease. ClinicalTrials.gov Identifier: NCT04691661. Last updated February 15, 2022. https://clinicaltrials.gov/ct2/show/NCT04691661.
  • Lee J, Han BC, Goh HG, et al. IY5511, a novel Bcr-Abl tyrosine kinase inhibitor, is highly active compound in inhibition of CrkL phosphorylation and in xenograft animal chronic myeloid leukemia model. ISH-APD. APBMT Meeting Abstract. Beijing (China). 2007.
  • Cho SR, et al. Plasma cell leukemia with rouleaux formation involving neoplastic cells and RBC. The Korean Journal of Hematol. 2011;46(3):152.
  • Mucke HA. Drug Repurposing Patent applications January–March 2020. Assay Drug Dev Technol. 2020;18(7):341–346.
  • Perrier V, Imberdis T, Lafon P-A, et al. Plasma cholesterol level determines in vivo prion propagation [S]. J Lipid Res. 2017;58(10):1950–1961.
  • Pinheiro TJ. The role of rafts in the fibrillization and aggregation of prions. Chem Phys Lipids. 2006;141(1–2):66–71.
  • Kempster S, Bate C, Williams A. Simvastatin treatment prolongs the survival of scrapie-infected mice. Neuroreport. 2007;18(5):479–482.
  • Mok SWF, Thelen KM, Riemer C, et al. Simvastatin prolongs survival times in prion infections of the central nervous system. Biochem Biophys Res Commun. 2006;348(2):697–702.
  • Jeong A, Suazo KF, Wood WG, et al. Isoprenoids and protein prenylation: implications in the pathogenesis and therapeutic intervention of Alzheimer’s disease. Crit Rev Biochem Mol Biol. 2018;53(3):279–310.
  • Fassbender K, Simons M, Bergmann C, et al. Simvastatin strongly reduces levels of Alzheimer’s disease β-amyloid peptides Aβ42 and Aβ40 in vitro and in vivo. Proceedings of the National Academy of Sciences (PNAS), USA, 2001. Vols.98(10): p. 5856–5861.
  • Hooff GP, Peters I, Wood WG, et al. Modulation of cholesterol, farnesylpyrophosphate, and geranylgeranylpyrophosphate in neuroblastoma SH-SY5Y-APP695 cells: impact on amyloid beta-protein production. Mol Neurobiol. 2010;41(2):341–350.
  • Shepardson NE, Shankar GM, Selkoe DJ. Cholesterol level and statin use in Alzheimer disease: i. Review of epidemiological and preclinical studies. Arch Neurol. 2011;68(10):1239–1244.
  • Haviv Y, Avrahami D, Ovadia H, et al. Induced neuroprotection independently from PrPSc accumulation in a mouse model for prion disease treated with simvastatin. Arch Neurol. 2008;65(6):762–775.
  • Forloni G, Iussich S, Awan T, et al. Tetracyclines affect prion infectivity. Proceedings of the National Academy of Sciences (PNAS), USA, 2002. Vols.99(16): p. 10849–10854.
  • Tagliavini F, Forloni G, Colombo L, et al. Tetracycline affects abnormal properties of synthetic PrP peptides and PrPSc in vitro. J Mol Biol. 2000;300(5):1309–1322.
  • Tagliavini F. S3‐01–03: prion therapy: tetracyclic compounds in animal models and patients with Creutzfeldt‐Jakob disease. Alzheimers Dement. 2008;4(4S_Part_5):T149–T150.
  • Ronga L, Langella E, Palladino P, et al. Does tetracycline bind helix 2 of prion? An integrated spectroscopical and computational study of the interaction between the antibiotic and α helix 2 human prion protein fragments. Proteins: structure. Funct Bioinf. 2007;66(3):707–715.
  • Haïk S, Marcon G, Mallet A, et al. Doxycycline in Creutzfeldt-Jakob disease: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2014;13(2):150–158.
  • Merlini G, Ascari E, Amboldi N, et al. Interaction of the anthracycline 4’-iodo-4’-deoxydoxorubicin with amyloid fibrils: inhibition of amyloidogenesis. Proceedings of the National Academy of Sciences (PNAS), USA, 1995. Vols.92(7): p. 2959–2963.
  • Tagliavini F, McArthur RA, Canciani B, et al. Effectiveness of anthracycline against experimental prion disease in Syrian hamsters. Science. 1997;276(5315):1119–1121.
  • Balducci C, Forloni G. Doxycycline for Alzheimer’s disease: fighting β-amyloid oligomers and neuroinflammation. Front Pharmacol. 2019;10:738.
  • De Luigi A, Colombo L, Diomede L, et al. The efficacy of tetracyclines in peripheral and intracerebral prion infection. PLoS One. 2008;3(3):e1888.
  • Varges D, Manthey H, Heinemann U, et al. Doxycycline in early CJD: a double-blinded randomised phase II and observational study. J Neurol Neurosurg. 2017;88(2):119–125.
  • Mangé A, Nishida N, Milhavet O, et al. Amphotericin B inhibits the generation of the scrapie isoform of the prion protein in infected cultures. J Virol. 2000;74(7):3135–3140.
  • Carmody M, Murphy B, Byrne B, et al. Biosynthesis of amphotericin derivatives lacking exocyclic carboxyl groups. J Biol Chem. 2005;280(41):34420–34426.
  • Soler L, Caffrey P, McMahon HE. Effects of new amphotericin analogues on the scrapie isoform of the prion protein. Biochim Biophys Acta. 2008;1780(10):1162–1167.
  • Beringue V, Adjou KT, Lamoury F, et al. Opposite effects of dextran sulfate 500, the polyene antibiotic MS-8209, and Congo red on accumulation of the protease-resistant isoform of PrP in the spleens of mice inoculated intraperitoneally with the scrapie agent. J Virol. 2000;74(12):5432–5440.
  • Arshad H, Patel Z, Mehrabian M, et al. The aminoglycoside G418 hinders de novo prion infection in cultured cells. J Biol Chem. 2021;297(3):101073.
  • Freyssin A, Page G, Fauconneau B, et al. Natural polyphenols effects on protein aggregates in Alzheimer’s and Parkinson’s prion-like diseases. Neural Regen Res. 2018;13(6):955.
  • Habtemariam S. Molecular pharmacology of rosmarinic and salvianolic acids: potential seeds for Alzheimer’s and vascular dementia drugs. Int J Mol Sci. 2018;19(2):458.
  • Velander P, Wu L, Henderson F, et al. Natural product-based amyloid inhibitors. Biochem Pharmacol. 2017;139:40–55.
  • Cornejo A, Aguilar Sandoval F, Caballero L, et al. Rosmarinic acid prevents fibrillization and diminishes vibrational modes associated to β sheet in tau protein linked to Alzheimer’s disease. J Enzyme Inhib Med Chem. 2017;32(1):945–953.
  • Toni M, Massimino ML, De Mario A, et al. Metal dyshomeostasis and their pathological role in prion and prion-like diseases: the basis for a nutritional approach. Front Neurosci. 2017;11:3.
  • Mandel SA, Amit T, Weinreb O, et al. Understanding the broad-spectrum neuroprotective action profile of green tea polyphenols in aging and neurodegenerative diseases. Journal of Alzheimer’s Disease. 2011;25(2):187–208.
  • Singh M, Arseneault M, Sanderson T, et al. Challenges for research on polyphenols from foods in Alzheimer’s disease: bioavailability, metabolism, and cellular and molecular mechanisms. J Agric Food Chem. 2008;56(13):4855–4873.
  • Heo HJ, Kim D-O, Choi SJ, et al. Potent Inhibitory Effect of Flavonoids in Scutellaria baicalensis on Amyloid β Protein-Induced Neurotoxicity. J Agric Food Chem. 2004;52(13):4128–4132.
  • Moon J-H, Park S-Y. Baicalein prevents human prion protein-induced neuronal cell death by regulating JNK activation. Int J Mol Med. 2015;35(2):439–445.
  • Shen H-M, Liu Z-G. JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic Biol Med. 2006;40(6):928–939.
  • Eiden M, Leidel F, Strohmeier B, et al. A medicinal herb Scutellaria lateriflora inhibits PrP replication in vitro and delays the onset of prion disease in mice. Front Psychiatry. 2012;3:9.
  • Cortez LM, Campeau J, Norman G, et al. Bile acids reduce prion conversion, reduce neuronal loss, and prolong male survival in models of prion disease. J Virol. 2015;89(15):7660–7672.
  • Cortez L, Sim V. The therapeutic potential of chemical chaperones in protein folding diseases. Prion. 2014;8(2):197–202.
  • Ahn T-K, Kim K-T, Joshi HP, et al. Therapeutic potential of tauroursodeoxycholic acid for the treatment of osteoporosis. Int J Mol Sci. 2020;21(12):4274.
  • Dirikoc S, Priola SA, Marella M, et al. Nonpsychoactive cannabidiol prevents prion accumulation and protects neurons against prion toxicity. J Neurosci. 2007;27(36):9537–9544.
  • Andrade JM, Faustino C, Garcia C, et al. Rosmarinus officinalis L.: an update review of its phytochemistry and biological activity. Future Sci OA. 2018;4(4):FSO283.
  • Karagianni K, Pettas S, Kanata E, et al. Carnosic acid and carnosol display antioxidant and anti-prion properties in in vitro and cell-free models of prion diseases. Antioxidants. 2022;11(4):726.
  • Satoh T, Kosaka K, Itoh K, et al. Carnosic acid, a catechol-type electrophilic compound, protects neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S- alkylation of targeted cysteines on Keap1. J Neurochem. 2008;104(4):1116–1131.
  • Shaker B, Yu M-S, Song JS, et al. LightBBB: computational prediction model of blood–brain-barrier penetration based on LightGBM. Bioinformatics. 2021;37(8):1135–1139.
  • Caughey B, Raymond LD, Raymond GJ, et al. Inhibition of protease-resistant prion protein accumulation in vitro by curcumin. J Virol. 2003;77(9):5499–5502.
  • Yang F, Lim GP, Begum AN, et al. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem. 2005;280(7):5892–5901.
  • Garcea G, Jones DJL, Singh R, et al. Detection of curcumin and its metabolites in hepatic tissue and portal blood of patients following oral administration. Br J Cancer. 2004;90(5):1011–1015.
  • Hafner-Bratkovič I, Gašperšič J, Šmid LM, et al. Curcumin binds to the α-helical intermediate and to the amyloid form of prion protein - a new mechanism for the inhibition of PrPSc accumulation. J Neurochem. 2008;104(6):1553–1564.
  • Lin C-F, Yu K-H, Jheng C-P, et al. Curcumin reduces amyloid fibrillation of prion protein and decreases reactive oxidative stress. Pathogens. 2013;2(3):506–519.
  • Kurien BT, Singh A, Matsumoto H, et al. Improving the solubility and pharmacological efficacy of curcumin by heat treatment. Assay Drug Dev Technol. 2007;5(4):567–576.
  • Lee J-H, Moon J-H, Kim S-W, et al. EGCG-mediated autophagy flux has a neuroprotection effect via a class III histone deacetylase in primary neuron cells. Oncotarget. 2015;6(12):9701.
  • Jeong J-K, Moon M-H, Lee Y-J, et al. Autophagy induced by the class III histone deacetylase Sirt1 prevents prion peptide neurotoxicity. Neurobiol Aging. 2013;34(1):146–156.
  • Qin W, Yang T, Ho L, et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem. 2006;281(31):21745–21754.
  • Parker JA, Arango M, Abderrahmane S, et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet. 2005;37(4):349–350.
  • Kim D, Nguyen MD, Dobbin MM, et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J. 2007;26(13):3169–3179.
  • Liu JW, Tian SJ, de Barry J, et al. Panaxadiol glycosides that induce neuronal differentiation in neurosphere stem cells. J Nat Prod. 2007;70(8):1329–1334.
  • Wu T, Kwaku OR, Li H-Z, et al. Sense ginsenosides from ginsengs: structure-activity relationship in autophagy. Nat Prod Commun. 2019;14(6):1934578X19858223.
  • Moon J-H, Lee J-H, Lee Y-J, et al. Autophagy flux induced by ginsenoside-Rg3 attenuates human prion protein-mediated neurotoxicity and mitochondrial dysfunction. Oncotarget. 2016;7(52):85697.
  • El Hachlafi N, Lakhdar F, Khouchlaa A, et al. Health benefits and pharmacological properties of hinokitiol. Processes. 2021;9(9):1680.
  • Jayakumar T, Hsu WH, Yen TL, et al. Hinokitiol, a natural tropolone derivative, offers neuroprotection from thromboembolic stroke in vivo. Evid Based Complement Alternat Med. 2013;2013:1–8.
  • Moon J-H, Lee J-H, Lee Y-J, et al. Hinokitiol protects primary neuron cells against prion peptide-induced toxicity via autophagy flux regulated by hypoxia inducing factor-1. Oncotarget. 2016;7(21):29944.
  • Jeong J-K, Seo JS, Moon MH, et al. Hypoxia-inducible factor-1 alpha regulates prion protein expression to protect against neuron cell damage. Neurobiol Aging. 2012;33(5):1006. e1–1006. e10.
  • Galano A, Tan DX, Reiter RJ. Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res. 2011;51(1):1–16.
  • Singhal NK, Srivastava G, Patel DK, et al. Melatonin or silymarin reduces maneb- and paraquat-induced Parkinson’s disease phenotype in the mouse. J Pineal Res. 2011;50(2):97–109.
  • Jeong J-K, Lee J-H, Moon J-H, et al. Melatonin-mediated β -catenin activation protects neuron cells against prion protein-induced neurotoxicity. J Pineal Res. 2014;57(4):427–434.
  • Jeong J-K, Moon M-H, Lee Y-J, et al. Melatonin-induced autophagy protects against human prion protein-mediated neurotoxicity. J Pineal Res. 2012;53(2):138–146.
  • Bleazard W, McCaffery JM, King EJ, et al. The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat Cell Biol. 1999;1(5):298–304.
  • Olichon A, Emorine LJ, Descoins E, et al. The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 2002;523(1–3):171–176.
  • Zhang X, Zhao D, Wu W, et al. Melatonin regulates mitochondrial dynamics and alleviates neuron damage in prion diseases. Aging (Albany NY). 2020;12(11):11139.
  • Loh D, Reiter RJ. Melatonin: regulation of prion protein phase separation in cancer multidrug resistance. Molecules. 2022;27(3):705.
  • Wu X, Li Q, Feng Y, et al. Antitumor research of the active ingredients from traditional Chinese medical plant Polygonum cuspidatum. Evid Based Complement Alternat Med. 2018; 2018:10. https://doi.org/10.1155/2018/2313021
  • Şöhretoğlu D, Baran MY, Arroo R, et al. Recent advances in chemistry, therapeutic properties and sources of polydatin. Phytochem Rev. 2018;17(5):973–1005.
  • Rivière C, Papastamoulis Y, Fortin P-Y, et al. New stilbene dimers against amyloid fibril formation. Bioorg Med Chem Lett. 2010;20(11):3441–3443.
  • Rivière C, Richard T, Quentin L, et al. Inhibitory activity of stilbenes on Alzheimer’s β-amyloid fibrils in vitro. Bioorg Med Chem. 2007;15(2):1160–1167.
  • Sirohi PR, Kumari A, Admane N, et al. The polyphenolic phytoalexin polydatin inhibits amyloid aggregation of recombinant human prion protein. RSC Adv. 2021;11(42):25901–25911.
  • Albani D, Polito L, Signorini A, et al. Neuroprotective properties of resveratrol in different neurodegenerative disorders. Biofactors. 2010;36(5):370–376.
  • Wang J, Zhang B-Y, Zhang J, et al. Treatment of SMB-S15 cells with resveratrol efficiently removes the PrPSc accumulation in vitro and prion infectivity in vivo. Mol Neurobiol. 2016;53(8):5367–5376.
  • Wang J, Zhang J, Shi Q, et al. Scrapie infection in experimental rodents and SMB-S15 cells decreased the brain endogenous levels and activities of Sirt1. J Mol Neurosci. 2015;55(4):1022–1030.
  • Li L, Zhu Y, Zhou S, et al. Experimental and theoretical insights into the inhibition mechanism of prion fibrillation by resveratrol and its derivatives. ACS Chem Neurosci. 2017;8(12):2698–2707.
  • Jeong JK, Moon MH, Bae BC, et al. Autophagy induced by resveratrol prevents human prion protein-mediated neurotoxicity. Neurosci Res. 2012;73(2):99–105.
  • Xie R, Nguyen S, McKeehan WL, et al. Acetylated microtubules are required for fusion of autophagosomes with lysosomes. BMC Cell Biol. 2010;11(1):1–12.
  • Phadwal K, Kurian D, Salamat MKF, et al. Spermine increases acetylation of tubulins and facilitates autophagic degradation of prion aggregates. Sci Rep. 2018;8(1):1–17.
  • Chen Q, Haddad GG. Role of trehalose phosphate synthase and trehalose during hypoxia: from flies to mammals. J Exp Biol. 2004;207(18):3125–3129.
  • Sarkar S, Davies JE, Huang Z, et al. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein. J Biol Chem. 2007;282(8):5641–5652.
  • Aguib Y, Heiseke A, Gilch S, et al. Autophagy induction by trehalose counter-acts cellular prion-infection. Autophagy. 2009;5(3):361–369.
  • Béranger F, Crozet C, Goldsborough A, et al. Trehalose impairs aggregation of PrPSc molecules and protects prion-infected cells against oxidative damage. Biochem Biophys Res Commun. 2008;374(1):44–48.
  • Lee H-J, Yoon Y-S, Lee S-J. Mechanism of neuroprotection by trehalose: controversy surrounding autophagy induction. Cell Death Dis. 2018;9(7):1–12.
  • Brody DL, Holtzman DM. Active and passive immunotherapy for neurodegenerative disorders. Annu. Rev Neurosci. 2008;31(1):175–193.
  • Souan L, Tal Y, Felling Y, et al. Modulation of proteinase-K resistant prion protein by prion peptide immunization. Eur J Immunol. 2001;31(8):2338–2346.
  • Aguzzi A, Lakkaraju AK, Frontzek K. Toward therapy of human prion diseases. Annu Rev Pharmacol Toxicol. 2018;58(1):331–351.
  • Sassa Y, Kataoka N, Inoshima Y, et al. Anti-PrP antibodies detected at terminal stage of prion-affected mouse. Cell Immunol. 2010;263(2):212–218.
  • Taschuk R, Van der Merwe J, Marciniuk K, et al. In vitro neutralization of prions with PrP Sc -specific antibodies. Prion. 2015;9(4):292–303.
  • Marciniuk K, Määttänen P, Taschuk R, et al. Development of a multivalent, PrPSc-specific prion vaccine through rational optimization of three disease-specific epitopes. Vaccine. 2014;32(17):1988–1997.
  • Taschuk R, Marciniuk K, Määttänen P, et al. Safety, specificity and immunogenicity of a PrP Sc -specific prion vaccine based on the YYR disease specific epitope. Prion. 2014;8(1):51–59.
  • Wood ME, Griebel P, Huizenga ML, et al. Accelerated onset of chronic wasting disease in elk (Cervus canadensis) vaccinated with a PrPSc-specific vaccine and housed in a prion contaminated environment. Vaccine. 2018;36(50):7737–7743.
  • Frontzek K, Pfammatter M, Sorce S, et al. Neurotoxic antibodies against the prion protein do not trigger prion replication. PLoS One. 2016;11(9):e0163601.
  • Frontzek K, Bardelli M, Senatore A, et al. A conformational switch controlling the toxicity of the prion protein. Nat Struct Mol Biol. 2022;1–10. https://doi.org/10.1101/2021.09.20.460912
  • Ilie IM, Caflisch A. Antibody binding increases the flexibility of the prion protein. Biochim Biophys Acta (Bba)-proteins and Proteomics. 2022;1870(11–12):140827.
  • Bardelli M, Frontzek K, Simonelli L, et al. A bispecific immunotweezer prevents soluble PrP oligomers and abolishes prion toxicity. PLoS Pathog. 2018;14(10):e1007335.
  • Ma Y, Ma J. Immunotherapy against prion disease. Pathogens. 2020;9(3):216.
  • Enari M, Flechsig E, Weissmann C, Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proceedings of the National Academy of Sciences (PNAS), USA, 2001. Vols.98(16): p. 9295–9299.
  • Féraudet C, Morel N, Simon S, et al. Screening of 145 anti-PrP monoclonal antibodies for their capacity to inhibit PrPSc replication in infected cells. J Biol Chem. 2005;280(12):11247–11258.
  • Pankiewicz J, Prelli F, Sy M-S, et al. Clearance and prevention of prion infection in cell culture by anti-PrP antibodies. Eur J Neurosci. 2006;23(10):2635–2647.
  • Peretz D, Williamson RA, Kaneko K, et al. Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature. 2001;412(6848):739–743.
  • Müller-Schiffmann A, Korth C. Vaccine approaches to prevent and treat prion infection. BioDrugs. 2008;22(1):45–52.
  • Sigurdsson EM, Sy M-S, Li R, et al. Anti-prion antibodies for prophylaxis following prion exposure in mice. Neurosci Lett. 2003;336(3):185–187.
  • Sadowski MJ, Pankiewicz J, Prelli F, et al. Anti-PrP Mab 6D11 suppresses PrPSc replication in prion infected myeloid precursor line FDC-P1/22L and in the lymphoreticular system in vivo. Neurobiol Dis. 2009;34(2):267–278.
  • Pankiewicz JE, Sanchez S, Kirshenbaum K, et al. Anti-prion protein antibody 6D11 restores cellular proteostasis of prion protein through disrupting recycling propagation of PrPSc and targeting PrPSc for lysosomal degradation. Mol Neurobiol. 2019;56(3):2073–2091.
  • White AR, Enever P, Tayebi M. Monoclonal antibodies inhibit prion replication and delay the development of prion disease. Nature, 2003;422(6927):80–83. https://doi.org/10.1038/nature01457
  • Khalili-Shirazi A, Kaisar M, Mallinson G, et al. β-PrP form of human prion protein stimulates production of monoclonal antibodies to epitope 91–110 that recognise native PrPSc. Biochimica Et Biophysica Acta (BBA) - Proteins and Proteomics. 2007;1774(11):1438–1450.
  • Biro L, Leone N. Aplastic anemia induced by quinacrine. Arch Dermatol. 1965;92(5):574–576.
  • Terada T, Tsuboi Y, Obi T, et al. Less protease-resistant PrP in a patient with sporadic CJD treated with intraventricular pentosan polysulphate. Acta Neurol Scand. 2010;121(2):127–130.
  • Zerr I. Investigating new treatments for Creutzfeldt–Jakob disease. Lancet Neurol. 2022;21(4):299–300.
  • Colini Baldeschi A, Zattoni M, Vanni S, et al. Innovative Non-PrP-targeted drug strategy designed to enhance prion clearance. J Med Chem. 2022;65(13):8998–9010.
  • Zattoni M, Mearelli M, Vanni S, et al. Serpin signatures in prion and alzheimer’s diseases. Mol Neurobiol. 2022;59:3778–3799. https://doi.org/10.1007/s12035-022-02817-3
  • Kristiansen M, Deriziotis P, Dimcheff DE, et al. Disease-associated prion protein oligomers inhibit the 26S proteasome. Mol Cell. 2007;26(2):175–188.
  • Lee FK, Wong AKY, Lee YW, et al. The role of ubiquitin linkages on α-synuclein induced-toxicity in a Drosophila model of Parkinson’s disease. J Neurochem. 2009;110(1):208–219.
  • Al-Ramahi I, Lam YC, Chen H-K, et al. CHIP protects from the neurotoxicity of expanded and wild-type ataxin-1 and promotes their ubiquitination and degradation. J Biol Chem. 2006;281(36):26714–26724.
  • Leestemaker Y, de Jong A, Witting KF, et al. Proteasome activation by small molecules. Cell Chem Biol. 2017;24(6):725–736. e7