1,589
Views
45
CrossRef citations to date
0
Altmetric
Review

Decoding the chemokine network that links leukocytes with decidual cells and the trophoblast during early implantation

, , , , , , & show all
Pages 197-207 | Received 11 Sep 2015, Accepted 18 Dec 2015, Published online: 18 Feb 2016

References

  • Redman CWG, Sargent IL. Immunology of pre-eclampsia. Am J Reprod Immunol 2010; 63:534-43; PMID:20331588; http://dx.doi.org/10.1111/j.1600-0897.2010.00831.x
  • Daher S, de Arruda Geraldes Denardi K, Blotta MHSL, Mamoni RL, Reck APM, Camano L, Mattar R. Cytokines in recurrent pregnancy loss. J Reprod Immunol 2004; 62:151-7; PMID:15288190; http://dx.doi.org/10.1016/j.jri.2003.10.004
  • Clark DA, Yu G, Arck PC, Levy GA, Gorczynski RM. MD-1 is a Critical Part of the Mechanism Causing Th1-Cytokine-Triggered Murine Fetal Loss Syndrome. Am J Reprod Immunol 2003; 49:297-307; PMID:12854734; http://dx.doi.org/10.1034/j.1600-0897.2003.00045.x
  • Kwak-Kim J, Yang KM, Gilman-Sachs A. Recurrent pregnancy loss: a disease of inflammation and coagulation. J Obstet Gynaecol Res 2009; 35:609-22; PMID:19751318; http://dx.doi.org/10.1111/j.1447-0756.2009.01079.x
  • Girardi G, Yarilin D, Thurman JM, Holers VM, Salmon JE. Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J Exp Med 2006; 203:2165-75; PMID:16923853;http://dx.doi.org/10.1084/jem.20061022
  • Yoshinaga K. Research on Blastocyst Implantation Essential Factors (BIEFs). Am J Reprod Immunol 2010; 63:413-24; PMID:20455874; http://dx.doi.org/10.1111/j.1600-0897.2010.00853.x
  • Molvarec A, Blois SM, Stenczer B, Toldi G, Tirado-Gonzalez I, Ito M, Shima T, Yoneda S, Vásárhelyi B, Rigó J, et al. Peripheral blood galectin-1-expressing T and natural killer cells in normal pregnancy and preeclampsia. Clin Immunol 2011; 139:48-56; PMID:21292557; http://dx.doi.org/10.1016/j.clim.2010.12.018
  • Blois SM, Ilarregui JM, Tometten M, Garcia M, Orsal AS, Cordo-Russo R, Toscano MA, Bianco GA, Kobelt P, Handjiski B, et al. A pivotal role for galectin-1 in fetomaternal tolerance. Nat Med 2007; 13:1450-7; PMID:18026113; http://dx.doi.org/10.1038/nm1680
  • Bromley SK, Mempel TR, Luster AD. Orchestrating the orchestrators: chemokines in control of T cell traffic. Nat Immunol 2008; 9:970-80; PMID:18711434; http://dx.doi.org/10.1038/ni.f.213
  • Raman D, Sobolik-Delmaire T, Richmond A. Chemokines in health and disease. Exp Cell Res 2011; 317:575-89; PMID:21223965;http://dx.doi.org/10.1016/j.yexcr.2011.01.005
  • Rozner AE, Dambaeva SV, Drenzek JG, Durning M, Golos TG. Modulation of cytokine and chemokine secretions in rhesus monkey trophoblast co-culture with decidual but not peripheral blood monocyte-derived macrophages. Am J Reprod Immunol 2011; 66:115-27; PMID:21276119;http://dx.doi.org/10.1111/j.1600-0897.2010.00979.x
  • Kallikourdis M, Andersen KG, Welch KA, Betz AG. Alloantigen-enhanced accumulation of CCR5+ “effector” regulatory T cells in the gravid uterus. Proc Natl Acad Sci U S A 2007; 104:594-9; PMID:17197426; http://dx.doi.org/10.1073/pnas.0604268104
  • Fraccaroli L, Alfieri J, Larocca L, Calafat M, Mor G, Leirós CP, Ramhorst R. A potential tolerogenic immune mechanism in a trophoblast cell line through the activation of chemokine-induced T cell death and regulatory T cell modulation. Hum Reprod 2009; 24:166-75; PMID:18824472;http://dx.doi.org/10.1093/humrep/den344
  • Du M-R, Wang S-C, Li D-J. The integrative roles of chemokines at the maternal-fetal interface in early pregnancy. Cell Mol Immunol 2014; 11:438-48; PMID:25109684; http://dx.doi.org/10.1038/cmi.2014.68
  • Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol 2000; 18:217-42; PMID:10837058;http://dx.doi.org/10.1146/annurev.immunol.18.1.217
  • Fraccaroli L, Alfieri J, Leiros CP, Ramhorst R. Immunomodulatory effects of chemokines during the early implantation window. Front Biosci (Elite Ed) 2009; 1:288-98; PMID:19482646
  • Luther SA, Cyster JG. Chemokines as regulators of T cell differentiation. Nat Immunol 2001; 2:102-7; PMID:11175801; http://dx.doi.org/10.1038/84205
  • Moser B, Loetscher P. Lymphocyte traffic control by chemokines. Nat Immunol 2001; 2:123-8; PMID:11175804; http://dx.doi.org/10.1038/84219
  • Sohy D, Yano H, de Nadai P, Urizar E, Guillabert A, Javitch JA, Parmentier M, Springael J-Y. Hetero-oligomerization of CCR2, CCR5, and CXCR4 and the protean effects of “selective” antagonists. J Biol Chem 2009; 284:31270-9; PMID:19758998; http://dx.doi.org/10.1074/jbc.M109.054809
  • Neel NF, Barzik M, Raman D, Sobolik-Delmaire T, Sai J, Ham AJ, Mernaugh RL, Gertler FB, Richmond A. VASP is a CXCR2-interacting protein that regulates CXCR2-mediated polarization and chemotaxis. J Cell Sci 2009; 122:1882-94; PMID:19435808; http://dx.doi.org/10.1242/jcs.039057
  • Raman D, Neel NF, Sai J, Mernaugh RL, Ham A-JL, Richmond AJ. Characterization of chemokine receptor CXCR2 interacting proteins using a proteomics approach to define the CXCR2 “chemosynapse”. Methods Enzymol 2009; 460:315-30; PMID:19446732; http://dx.doi.org/10.1016/S0076-6879(09)05215-X
  • Raman D, Sai J, Neel NF, Chew CS, Richmond A. LIM and SH3 protein-1 modulates CXCR2-mediated cell migration. PLoS One 2010; 5:e10050; PMID:20419088; http://dx.doi.org/10.1371/journal.pone.0010050
  • Borroni EM, Bonecchi R, Buracchi C, Savino B, Mantovani A, Locati M. Chemokine decoy receptors: new players in reproductive immunology. Immunol Invest 2008; 37:483-97; PMID:18716935; http://dx.doi.org/10.1080/08820130802191318
  • Wessels JM, Linton NF, van den Heuvel MJ, Cnossen SA, Edwards AK, Croy BA, Tayade C. Expression of chemokine decoy receptors and their ligands at the porcine maternal-fetal interface. Immunol Cell Biol 2011; 89:304-13; PMID:20680026; http://dx.doi.org/10.1038/icb.2010.95
  • Sato K, Kawasaki H, Nagayama H, Enomoto M, Morimoto C, Tadokoro K, Juji T, Takahashi TA. TGF- 1 Reciprocally Controls Chemotaxis of Human Peripheral Blood Monocyte-Derived Dendritic Cells Via Chemokine Receptors. J Immunol 2000; 164:2285-95; PMID:10679062; http://dx.doi.org/10.4049/jimmunol.164.5.2285
  • Schumacher A, Brachwitz N, Sohr S, Engeland K, Langwisch S, Dolaptchieva M, Alexander T, Taran A, Malfertheiner SF, Costa S-D, et al. Human Chorionic Gonadotropin Attracts Regulatory T Cells into the Fetal-Maternal Interface during Early Human Pregnancy. J Immunol 2009; 182:5488-97; PMID:19380797; http://dx.doi.org/10.4049/jimmunol.0803177
  • Said SI. The discovery of VIP: initially looked for in the lung, isolated from intestine, and identified as a neuropeptide. Peptides 2007; 28:1620-1; PMID:17719695; http://dx.doi.org/10.1016/j.peptides.2007.06.007
  • Lara-Marquez M, O'Dorisio M, O'Dorisio T, Shah M, Karacay B. Selective gene expression and activation-dependent regulation of vasoactive intestinal peptide receptor type 1 and type 2 in human T cells. J Immunol 2001; 166:2522-30; PMID:11160313; http://dx.doi.org/10.4049/jimmunol.166.4.2522
  • Martinez C, Delgado M, Abad C, Gomariz RP, Ganea D, Leceta J. Regulation of VIP production and secretion by murine lymphocytes. J Neuroimmunol 1999; 93:126-38; PMID:10378876; http://dx.doi.org/10.1016/S0165-5728(98)00216-1
  • Li J-M, Southerland L, Hossain MS, Giver CR, Wang Y, Darlak K, Harris W, Waschek J, Waller EK. Absence of vasoactive intestinal peptide expression in hematopoietic cells enhances Th1 polarization and antiviral immunity in mice. J Immunol 2011; 187:1057-65; PMID:21677142; http://dx.doi.org/10.4049/jimmunol.1100686
  • Lodde BM, Mineshiba F, Wang J, Cotrim AP, Afione S, Tak PP, Baum BJ. Effect of human vasoactive intestinal peptide gene transfer in a murine model of Sjogren's syndrome. Ann Rheum Dis 2006; 65:195-200; PMID:15975969; http://dx.doi.org/10.1136/ard.2005.038232
  • Delgado M, Abad C, Martinez C, Leceta J, Gomariz RP. Vasoactive intestinal peptide prevents experimental arthritis by downregulating both autoimmune and inflammatory components of the disease. Nat Med 2001; 7:563-8; PMID:11329057; http://dx.doi.org/10.1038/87887
  • Gonzalez-Rey E, Delgado M. Vasoactive intestinal peptide and regulatory T-cell induction: a new mechanism and therapeutic potential for immune homeostasis. Trends Mol Med 2007; 13:241-51; PMID:17467339; http://dx.doi.org/10.1016/j.molmed.2007.04.003
  • Yadav M, Goetzl EJ. Vasoactive intestinal peptide-mediated Th17 differentiation: an expanding spectrum of vasoactive intestinal peptide effects in immunity and autoimmunity. Ann N Y Acad Sci 2008; 1144:83-9; PMID:19076367; http://dx.doi.org/10.1196/annals.1418.020
  • Jimeno R, Gomariz RP, Gutiérrez-Cañas I, Martínez C, Juarranz Y, Leceta J. New insights into the role of VIP on the ratio of T-cell subsets during the development of autoimmune diabetes. Immunol Cell Biol 2010; 88:734-45; PMID:20309012; http://dx.doi.org/10.1038/icb.2010.29
  • Rosignoli F, Torroba M, Juarranz Y, García-Gómez M, Martinez C, Gomariz RP, Pérez-Leirós C, Leceta J. VIP and tolerance induction in autoimmunity. Ann N Y Acad Sci 2006; 1070:525-30; PMID:16888219; http://dx.doi.org/10.1196/annals.1317.073
  • Chorny A, Gonzalez-Rey E, Fernandez-Martin A, Ganea D, Delgado M. Vasoactive intestinal peptide induces regulatory dendritic cells that prevent acute graft-versus-host disease while maintaining the graft-versus-tumor response. Blood 2006; 107:3787-94; PMID:16418327; http://dx.doi.org/10.1182/blood-2005-11-4495
  • Graf AH, Hütter W, Hacker GW, Steiner H, Anderson V, Staudach A, Dietze O. Localization and distribution of vasoactive neuropeptides in the human placenta. Placenta 1996; 17:413-21; PMID:8899870; http://dx.doi.org/10.1016/S0143-4004(96)90023-5
  • Marzioni D, Fiore G, Giordano A, Nabissi M, Florio P, Verdenelli F, Petraglia F, Castellucci M. Placental expression of substance P and vasoactive intestinal peptide: evidence for a local effect on hormone release. J Clin Endocrinol Metab 2005; 90:2378-83; PMID:15623814; http://dx.doi.org/10.1210/jc.2004-1512
  • Deutsch PJ, Sun Y, Kroog GS. Vasoactive intestinal peptide increases intracellular cAMP and gonadotropin-alpha gene activity in JEG-3 syncytial trophoblasts. Constraints posed by desensitization. J Biol Chem 1990; 265:10274-81; PMID:1693918
  • Blidner AG, Rabinovich GA. “Sweetening” pregnancy: galectins at the fetomaternal interface. Am J Reprod Immunol 2013; 69(4):369-82; PMID:23406009
  • Ramhorst RE, Giribaldi L, Fraccaroli L, Toscano MA, Stupirski JC, Romero MD, Durand ES, Rubinstein N, Blaschitz A, Sedlmayr P, et al. Galectin-1 confers immune privilege to human trophoblast: implications in recurrent fetal loss. Glycobiology 2012; 22:1374-86; PMID:22752006;http://dx.doi.org/10.1093/glycob/cws104
  • Barker JN, Sarma V, Mitra RS, Dixit VM, Nickoloff BJ. Marked synergism between tumor necrosis factor-alpha and interferon-gamma in regulation of keratinocyte-derived adhesion molecules and chemotactic factors. J Clin Invest 1990; 85:605-8; PMID:2105343; http://dx.doi.org/10.1172/JCI114481
  • Ren L, Liu Y-Q, Zhou W-H, Zhang Y-Z. Trophoblast-derived chemokine CXCL12 promotes CXCR4 expression and invasion of human first-trimester decidual stromal cells. Hum Reprod 2012; 27:366-74; PMID:22114110; http://dx.doi.org/10.1093/humrep/der395
  • Zhou W-H, Du M-R, Dong L, Yu J, Li D-J. Chemokine CXCL12 promotes the cross-talk between trophoblasts and decidual stromal cells in human first-trimester pregnancy. Hum Reprod 2008; 23:2669-79; PMID:18687671; http://dx.doi.org/10.1093/humrep/den308
  • McGrath KE, Koniski AD, Maltby KM, McGann JK, Palis J. Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev Biol 1999; 213:442-56; PMID:10479460; http://dx.doi.org/10.1006/dbio.1999.9405
  • Dominguez F, Pellicer A, Simon C. The Chemokine Connection: Hormonal and Embryonic Regulation at the Human Maternal-Embryonic Interface—A Review. Placenta 2003; 24:S48-S55; PMID:14559030; http://dx.doi.org/10.1016/S0143-4004(03)00134-6
  • Hanna J, Wald O, Goldman-Wohl D, Prus D, Markel G, Gazit R, Katz G, Haimov-Kochman R, Fujii N, Yagel S, et al. CXCL12 expression by invasive trophoblasts induces the specific migration of CD16- human natural killer cells. Blood 2003; 102:1569-77; PMID:12730110; http://dx.doi.org/10.1182/blood-2003-02-0517
  • Santoni A, Carlino C, Gismondi A. Uterine NK cell development, migration and function. Reprod Biomed Online 2008; 16:202-10; PMID:18284874; http://dx.doi.org/10.1016/S1472-6483(10)60575-5
  • Kumar A, Kumar S, Dinda AK, Luthra K. Differential expression of CXCR4 receptor in early and term human placenta. Placenta 2004; 25:347-51; PMID:15028427; http://dx.doi.org/10.1016/j.placenta.2003.10.003
  • Wu X, Jin L-P, Yuan M-M, Zhu Y, Wang M-Y, Li D-J. Human first-trimester trophoblast cells recruit CD56brightCD16- NK cells into decidua by way of expressing and secreting of CXCL12/stromal cell-derived factor 1. J Immunol 2005; 175:61-8; PMID:15972632; http://dx.doi.org/10.4049/jimmunol.175.1.61
  • Nancy P, Tagliani E, Tay C-S, Asp P, Levy DE, Erlebacher A. Chemokine gene silencing in decidual stromal cells limits T cell access to the maternal-fetal interface. Science 2012; 336:1317-21; PMID:22679098; http://dx.doi.org/10.1126/science.1220030
  • Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S, Prus D, Cohen-Daniel L, Arnon TI, Manaster I, et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 2006; 12:1065-74; PMID:16892062; http://dx.doi.org/10.1038/nm1452
  • Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol 2004; 5:266-71; PMID:14758358; http://dx.doi.org/10.1038/ni1037
  • Silasi M, Mor G. Decidual stromal cells as regulators of T-cell access to the maternal-fetal interface. Am J Reprod Immunol 2012; 68:279-81; PMID:22935072; http://dx.doi.org/10.1111/aji.12006
  • Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J, Dzuiba J, Van Damme J, Walz A, Marriott D. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 1995; 270:27348-57; PMID:7592998; http://dx.doi.org/10.1074/jbc.270.45.27348
  • Heidemann J, Ogawa H, Rafiee P, Lügering N, Maaser C, Domschke W, Binion DG, Dwinell MB. Mucosal angiogenesis regulation by CXCR4 and its ligand CXCL12 expressed by human intestinal microvascular endothelial cells. Am J Physiol Gastrointest Liver Physiol 2004; 286:G1059-68; PMID:14764445; http://dx.doi.org/10.1152/ajpgi.00417.2003
  • Salcedo R, Oppenheim JJ. Role of chemokines in angiogenesis: CXCL12/SDF-1 and CXCR4 interaction, a key regulator of endothelial cell responses. Microcirculation 2003; 10:359-70; PMID:12851652; http://dx.doi.org/10.1080/mic.10.3-4.359.370
  • Nanney LB, Mueller SG, Bueno R, Peiper SC, Richmond A. Distributions of melanoma growth stimulatory activity of growth-regulated gene and the interleukin-8 receptor B in human wound repair. Am J Pathol 1995; 147:1248-60; PMID:7485389
  • Ishida Y, Gao J-L, Murphy PM. Chemokine receptor CX3CR1 mediates skin wound healing by promoting macrophage and fibroblast accumulation and function. J Immunol 2008; 180:569-79; PMID:18097059; http://dx.doi.org/10.4049/jimmunol.180.1.569
  • Inokuma D, Abe R, Fujita Y, Sasaki M, Shibaki A, Nakamura H, McMillan JR, Shimizu T, Shimizu H. CTACK/CCL27 accelerates skin regeneration via accumulation of bone marrow-derived keratinocytes. Stem Cells 2006; 24:2810-6; PMID:16931770; http://dx.doi.org/10.1634/stemcells.2006-0264
  • Moyer RA, Wendt MK, Johanesen PA, Turner JR, Dwinell MB. Rho activation regulates CXCL12 chemokine stimulated actin rearrangement and restitution in model intestinal epithelia. Lab Invest 2007; 87:807-17; PMID:17572689; http://dx.doi.org/10.1038/labinvest.3700595
  • Dwinell MB, Johanesen PA, Smith JM. Immunobiology of epithelial chemokines in the intestinal mucosa. Surgery 2003; 133:601-7; PMID:12796725; http://dx.doi.org/10.1067/msy.2003.143
  • Smith JM, Johanesen PA, Wendt MK, Binion DG, Dwinell MB. CXCL12 activation of CXCR4 regulates mucosal host defense through stimulation of epithelial cell migration and promotion of intestinal barrier integrity. Am J Physiol Gastrointest Liver Physiol 2005; 288:G316-26; PMID:15358596; http://dx.doi.org/10.1152/ajpgi.00208.2004
  • Gillitzer R, Goebeler M. Chemokines in cutaneous wound healing. J Leukoc Biol 2001; 69:513-21; PMID:11310836
  • Nagamatsu T, Schust DJ. The contribution of macrophages to normal and pathological pregnancies. Am J Reprod Immunol 2010; 63:460-71; PMID:20163399; http://dx.doi.org/10.1111/j.1600-0897.2010.00813.x
  • Ambarus CA, Krausz S, van Eijk M, Hamann J, Radstake TRDJ, Reedquist KA, Tak PP, Baeten DLP. Systematic validation of specific phenotypic markers for in vitro polarized human macrophages. J Immunol Methods 2012; 375:196-206; PMID:22075274; http://dx.doi.org/10.1016/j.jim.2011.10.013
  • Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 2013; 229:176-85; PMID:23096265; http://dx.doi.org/10.1002/path.4133
  • Gustafsson C, Mjösberg J, Matussek A, Geffers R, Matthiesen L, Berg G, Sharma S, Buer J, Ernerudh J. Gene expression profiling of human decidual macrophages: evidence for immunosuppressive phenotype. PLoS One 2008; 3:e2078; PMID:18446208; http://dx.doi.org/10.1371/journal.pone.0002078
  • Abrahams VM, Mor G. Toll-like receptors and their role in the trophoblast. Placenta 2005; 26:540-7; PMID:15993703; http://dx.doi.org/10.1016/j.placenta.2004.08.010
  • Grasso E, Paparini D, Hauk V, Salamone G, Leiros CP, Ramhorst R. Differential migration and activation profile of monocytes after trophoblast interaction. PLoS One 2014; 9:e97147; PMID:24849800; http://dx.doi.org/10.1371/journal.pone.0097147
  • Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008; 8:958-69; PMID:19029990; http://dx.doi.org/10.1038/nri2448
  • Delgado M, Pozo D, Martinez C, Leceta J, Calvo JR, Ganea D, Gomariz RP. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit endotoxin-induced TNF-alpha production by macrophages: in vitro and in vivo studies. J Immunol 1999; 162:2358-67; PMID:9973516
  • Paparini D, Grasso E, Calo G, Vota D, Lauricella AM, Quintana I, Ramhorst R, Leiros CP. VIP enhances apoptotic cell phagocytosis by monocyte/macrophages in an in vitro model of immune-trophoblast interaction. Placenta 2015;36:495; http://dx.doi.org/10.1016/j.placenta.2015.01.468
  • Guermonprez P, Valladeau J, Zitvogel L, Théry C, Amigorena S. Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 2002; 20:621-67; PMID:11861614; http://dx.doi.org/10.1146/annurev.immunol.20.100301.064828
  • Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol 2003; 21:685-711; PMID:12615891; http://dx.doi.org/10.1146/annurev.immunol.21.120601.141040
  • Ardavín C, Amigorena S, Reis e Sousa C. Dendritic cells: immunobiology and cancer immunotherapy. Immunity 2004; 20:17-23; http://dx.doi.org/10.1016/S1074-7613(03)00352-2
  • Laskarin G, Kämmerer U, Rukavina D, Thomson AW, Fernandez N, Blois SM. Antigen-presenting cells and materno-fetal tolerance: an emerging role for dendritic cells. Am J Reprod Immunol 2007; 58:255-67; PMID:17681042; http://dx.doi.org/10.1111/j.1600-0897.2007.00511.x
  • Pollard JW. Uterine DCs are essential for pregnancy. J Clin Invest 2008; 118:3832-5; PMID:19033651
  • Plaks V, Birnberg T, Berkutzki T, Sela S, BenYashar A, Kalchenko V, Mor G, Keshet E, Dekel N, Neeman M, et al. Uterine DCs are crucial for decidua formation during embryo implantation in mice. J Clin Invest 2008; 118:3954-65; PMID:19033665
  • Kämmerer U, Schoppet M, McLellan AD, Kapp M, Huppertz HI, Kämpgen E, Dietl J. Human decidua contains potent immunostimulatory CD83(+) dendritic cells. Am J Pathol 2000; 157:159-69; http://dx.doi.org/10.1016/S0002-9440(10)64527-0
  • Blois S, Alba Soto CD, Olmos S, Chuluyan E, Gentile T, Arck PC, Margni RA. Therapy with dendritic cells influences the spontaneous resorption rate in the CBA/J x DBA/2J mouse model. Am J Reprod Immunol 2004; 51:40-8; PMID:14725565; http://dx.doi.org/10.1046/j.8755-8920.2003.00120.x
  • Zarnani AH, Moazzeni SM, Shokri F, Salehnia M, Dokouhaki P, Ghods R, Mahmoodi AR, Jeddi-Tehrani M. Microenvironment of the feto-maternal interface protects the semiallogenic fetus through its immunomodulatory activity on dendritic cells. Fertil Steril 2008; 90:781-8; PMID:17482607; http://dx.doi.org/10.1016/j.fertnstert.2007.01.102
  • Salamone G, Fraccaroli L, Gori S, Grasso E, Paparini D, Geffner J, Pérez Leirós C, Ramhorst R. Trophoblast cells induce a tolerogenic profile in dendritic cells. Hum Reprod 2012; 27:2598-606; PMID:22718280; http://dx.doi.org/10.1093/humrep/des208
  • Teles A, Schumacher A, Kühnle M-C, Linzke N, Thuere C, Reichardt P, Tadokoro CE, Hämmerling GJ, Zenclussen AC. Control of uterine microenvironment by foxp3(+) cells facilitates embryo implantation. Front Immunol 2013; 4:158; PMID:23801995; http://dx.doi.org/10.3389/fimmu.2013.00158
  • Gellersen B, Brosens J. Cyclic AMP and progesterone receptor cross-talk in human endometrium: a decidualizing affair. J Endocrinol 2003; 178:357-72; PMID:12967329; http://dx.doi.org/10.1677/joe.0.1780357
  • Mesiano S, Wang Y, Norwitz ER. Progesterone receptors in the human pregnancy uterus: do they hold the key to birth timing? Reprod Sci 2011; 18:6-19; PMID:20889955; http://dx.doi.org/10.1177/1933719110382922
  • Ramhorst R, Patel R, Corigliano A, Etchepareborda JJ, Fainboim L, Schust D. Induction of maternal tolerance to fetal alloantigens by RANTES production. Am J Reprod Immunol 2006; 56:302-11; PMID:17076674; http://dx.doi.org/10.1111/j.1600-0897.2006.00430.x
  • Ramhorst R, Gutiérrez G, Corigliano A, Junovich G, Fainboim L. Implication of RANTES in the modulation of alloimmune response by progesterone during pregnancy. Am J Reprod Immunol 2007; 57:147-52; PMID:17217369; http://dx.doi.org/10.1111/j.1600-0897.2006.00458.x
  • Teles A, Thuere C, Wafula PO, El-Mousleh T, Zenclussen ML, Zenclussen AC. Origin of Foxp3(+) cells during pregnancy. Am J Clin Exp Immunol 2013; 2:222-33; PMID:24179730
  • Graham CH, Hawley TS, Hawley RG, MacDougall JR, Kerbel RS, Khoo N, Lala PK. Establishment and characterization of first trimester human trophoblast cells with extended lifespan. Exp Cell Res 1993; 206:204-11; PMID:7684692; http://dx.doi.org/10.1006/excr.1993.1139
  • Straszewski-Chavez SL, Abrahams VM, Alvero a B, Aldo PB, Ma Y, Guller S, Romero R, Mor G. The isolation and characterization of a novel telomerase immortalized first trimester trophoblast cell line, Swan 71. Placenta 2009; 30:939-48; PMID:19766308; http://dx.doi.org/10.1016/j.placenta.2009.08.007
  • Ramhorst R, Fraccaroli L, Aldo P, Alvero AB, Cardenas I, Leirós CP, Mor G. Modulation and recruitment of inducible regulatory T cells by first trimester trophoblast cells. Am J Reprod Immunol 2012; 67:17-27; PMID:21819477; http://dx.doi.org/10.1111/j.1600-0897.2011.01056.x
  • Mold JE, Michaëlsson J, Burt TD, Muench MO, Beckerman KP, Busch MP, Lee T-H, Nixon DF, McCune JM. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science 2008; 322:1562-5; PMID:19056990; http://dx.doi.org/10.1126/science.1164511
  • Mjösberg J, Berg G, Jenmalm MC, Ernerudh J. FOXP3+ regulatory T cells and T helper 1, T helper 2, and T helper 17 cells in human early pregnancy decidua. Biol Reprod 2010; 82:698-705; PMID:20018909; http://dx.doi.org/10.1095/biolreprod.109.081208
  • Mjösberg J, Svensson J, Johansson E, Hellström L, Casas R, Jenmalm MC, Boij R, Matthiesen L, Jönsson J-I, Berg G, et al. Systemic reduction of functionally suppressive CD4dimCD25highFoxp3+ Tregs in human second trimester pregnancy is induced by progesterone and 17beta-estradiol. J Immunol 2009; 183:759-69; PMID:19535629; http://dx.doi.org/10.4049/jimmunol.0803654
  • Tilburgs T, Roelen DL, van der Mast BJ, de Groot-Swings GM, Kleijburg C, Scherjon SA, Claas FH. Evidence for a selective migration of fetus-specific CD4+CD25bright regulatory T cells from the peripheral blood to the decidua in human pregnancy. J Immunol 2008; 180:5737-45; PMID:18390759; http://dx.doi.org/10.4049/jimmunol.180.8.5737
  • Tilburgs T, Schonkeren D, Eikmans M, Nagtzaam NM, Datema G, Swings GM, Prins F, van Lith JM, van der Mast BJ, Roelen DL, et al. Human decidual tissue contains differentiated CD8+ effector-memory T cells with unique properties. J Immunol 2010; 185:4470-7; PMID:20817873; http://dx.doi.org/10.4049/jimmunol.0903597
  • Jimeno R, Leceta J, Martínez C, Gutiérrez-Cañas I, Pérez-García S, Carrión M, Gomariz RP, Juarranz Y. Effect of VIP on the balance between cytokines and master regulators of activated helper T cells. Immunol Cell Biol 2012; 90:178-86; PMID:21445087; http://dx.doi.org/10.1038/icb.2011.23
  • Hauk V, Azzam S, Calo G, Gallino L, Paparini D, Franchi A, Ramhorst R, Leirós CP. Vasoactive intestinal Peptide induces an immunosuppressant microenvironment in the maternal-fetal interface of non-obese diabetic mice and improves early pregnancy outcome. Am J Reprod Immunol 2014; 71:120-30; PMID:24405265; http://dx.doi.org/10.1111/aji.12167
  • Hendrix CW, Flexner C, MacFarland RT, Giandomenico C, Fuchs EJ, Redpath E, Bridger G, Henson GW. Pharmacokinetics and safety of AMD-3100, a novel antagonist of the CXCR-4 chemokine receptor, in human volunteers. Antimicrob Agents Chemother 2000; 44:1667-73; PMID:10817726; http://dx.doi.org/10.1128/AAC.44.6.1667-1673.2000
  • Plerixafor: AMD 3100, AMD3100, JM 3100, SDZ SID 791. Drugs R D 2007; 8:113-9; PMID:17324009; http://dx.doi.org/10.2165/00126839-200708020-00006
  • Abel S, Back DJ, Vourvahis M. Maraviroc: pharmacokinetics and drug interactions. Antivir Ther 2009; 14:607-18; PMID:19704163; http://dx.doi.org/10.3851/IMP1297
  • Horuk R. Chemokine receptor antagonists: overcoming developmental hurdles. Nat Rev Drug Discov 2009; 8:23-33; PMID:19079127; http://dx.doi.org/10.1038/nrd2734
  • Rutgeerts P, Vermeire S, Van Assche G. Biological therapies for inflammatory bowel diseases. Gastroenterology 2009; 136:1182-97; PMID:19249397; http://dx.doi.org/10.1053/j.gastro.2009.02.001
  • Veldkamp CT, Seibert C, Peterson FC, De la Cruz NB, Haugner JC, Basnet H, Sakmar TP, Volkman BF. Structural basis of CXCR4 sulfotyrosine recognition by the chemokine SDF-1/CXCL12. Sci Signal 2008; 1:ra4; PMID:18799424; http://dx.doi.org/10.1126/scisignal.1160755
  • Roy I, Evans DB, Dwinell MB. Chemokines and chemokine receptors: update on utility and challenges for the clinician. Surgery 2014; 155:961-73; PMID:24856117; http://dx.doi.org/10.1016/j.surg.2014.02.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.