1,394
Views
9
CrossRef citations to date
0
Altmetric
Review

Integration of tooth morphogenesis and innervation by local tissue interactions, signaling networks, and semaphorin 3A

&
Pages 618-626 | Received 16 May 2016, Accepted 20 Jul 2016, Published online: 15 Aug 2016

References

  • Leso H, Brook AH. Epithelial histogenesis during tooth development. Arch Oral Biol 2009; 54 (Suppl 1):S25-33; PMID:18656852; http://dx.doi.org/10.1016/j.archoralbio.2008.05.019
  • Cobourne MT, Sharpe PT. Making up the numbers: The molecular control of mammalian dental formula. Semin Cell Dev Biol 2010; 21:314-24; PMID:20080198; http://dx.doi.org/10.1016/j.semcdb.2010.01.007
  • Thesleff I. Current understanding of the process of tooth formation: transfer from the laboratory to the clinic. Australian Dental J 2014; 59 (Suppl 1):48-54; http://dx.doi.org/10.1111/adj.12102
  • Mitsiadis TA, Harada H. Regenerated teeth: the future of tooth replacement. An update. Regenerative Med 2015; 10:5-8; http://dx.doi.org/10.2217/rme.14.78
  • Luukko K, Kvinnsland IH, Kettunen P. Tissue interactions in the regulation of axon pathfinding during tooth morphogenesis. Dev Dyn 2005; 234:482-8; PMID:16217735; http://dx.doi.org/10.1002/dvdy.20586
  • Fried K, Nosrat C, Lillesaar C, Hildebrand C. Molecular signaling and pulpal nerve development. Crit Rev Oral Biol Med 2000; 11:318-32; PMID:11021633; http://dx.doi.org/10.1177/10454411000110030301
  • Luukko K, Moe K, Sijaona A, Furmanek T, Hals Kvinnsland I, Midtbo M, Kettunen P. Secondary induction and the development of tooth nerve supply. Ann Anat 2008; 190:178-87; PMID:18413271; http://dx.doi.org/10.1016/j.aanat.2007.10.003
  • Fried K, Lillesaar C, Sime W, Kaukua N, Patarroyo M. Target finding of pain nerve fibers: neural growth mechanisms in the tooth pulp. Physiol Behav 2007; 92:40-5; PMID:17585959; http://dx.doi.org/10.1016/j.physbeh.2007.05.032
  • Luukko K, Kettunen P. Coordination of tooth morphogenesis and neuronal development through tissue interactions: Lessons from mouse models. Exp Cell Res 2014; PMID:24631295
  • Hildebrand C, Fried K, Tuisku F, Johansson CS. Teeth and tooth nerves. Prog Neurobiol 1995; 45:165-222; PMID:7777672; http://dx.doi.org/10.1016/0301-0082(94)00045-J
  • Byers MR, Narhi MV. Dental injury models: experimental tools for understanding neuroinflammatory interactions and polymodal nociceptor functions. Crit Rev Oral Biol Med 1999; 10:4-39; PMID:10759425; http://dx.doi.org/10.1177/10454411990100010101
  • Byers MR, Suzuki H, Maeda T. Dental neuroplasticity, neuro-pulpal interactions, and nerve regeneration. Microsc Res Tech 2003; 60:503-15; PMID:12619126; http://dx.doi.org/10.1002/jemt.10291
  • Moe K, Kettunen P, Kvinnsland IH, Luukko K. Development of the pioneer sympathetic innervation into the dental pulp of the mouse mandibular first molar. Arch Oral Biol 2008; 53:865-73; PMID:18436190; http://dx.doi.org/10.1016/j.archoralbio.2008.03.004
  • Haug SR, Heyeraas KJ. Modulation of dental inflammation by the sympathetic nervous system. J Dent Res 2006; 85:488-95; PMID:16723642; http://dx.doi.org/10.1177/154405910608500602
  • Tuisku F, Hildebrand C. Evidence for a neural influence on tooth germ generation in a polyphyodont species. Dev Biol 1994; 165:1-9; PMID:8088427; http://dx.doi.org/10.1006/dbio.1994.1228
  • Fujiyama K, Yamashiro T, Fukunaga T, Balam TA, Zheng L, Takano-Yamamoto T. Denervation resulting in dento-alveolar ankylosis associated with decreased Malassez epithelium. J Dent Res 2004; 83:625-9; PMID:15271971; http://dx.doi.org/10.1177/154405910408300808
  • Zhao H, Feng J, Seidel K, Shi S, Klein O, Sharpe P, Chai Y. Secretion of Shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell 2014; 14:160-73; PMID:24506883; http://dx.doi.org/10.1016/j.stem.2013.12.013
  • Kaukua N, Shahidi MK, Konstantinidou C, Dyachuk V, Kaucka M, Furlan A, An Z, Wang L, Hultman I, Ahrlund-Richter L, et al. Glial origin of mesenchymal stem cells in a tooth model system. Nature 2014; 513:551-4; PMID:25079316; http://dx.doi.org/10.1038/nature13536
  • Thesleff I, Nieminen P. Tooth induction. Encyclopedia Life Sci 2005; 1-9; http://dx.doi.org/10.1038/npg.els.0004183
  • Jernvall J, Thesleff I. Tooth shape formation and tooth renewal: evolving with the same signals. Development 2012; 139:3487-97; PMID:22949612; http://dx.doi.org/10.1242/dev.085084
  • Lumsden AG. Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development 1988; 103 (Suppl):155-69; PMID:3250849
  • Obara N, Takeda M. Innervation of mouse molars during the early states of tooth germ development. Higashi Nippon Shigaku Zasshi 1989; 8:115-24; PMID:2486712
  • Kettunen P, Loes S, Furmanek T, Fjeld K, Kvinnsland IH, Behar O, Yagi T, Fujisawa H, Vainio S, Taniguchi M, et al. Coordination of trigeminal axon navigation and patterning with tooth organ formation: epithelial-mesenchymal interactions, and epithelial Wnt4 and Tgfbeta1 regulate semaphorin 3a expression in the dental mesenchyme. Development 2005; 132:323-34; PMID:15604101; http://dx.doi.org/10.1242/dev.01541
  • Kettunen P, Spencer-Dene B, Furmanek T, Kvinnsland IH, Dickson C, Thesleff I, Luukko K. Fgfr2b mediated epithelial-mesenchymal interactions coordinate tooth morphogenesis and dental trigeminal axon patterning. Mech Dev 2007; 124:868-83; PMID:17951031; http://dx.doi.org/10.1016/j.mod.2007.09.003
  • Moe K, Sijaona A, Shrestha A, Kettunen P, Taniguchi M, Luukko K. Semaphorin 3A controls timing and patterning of the dental pulp innervation. Differentiation 2012; 84:371-9; PMID:23142733; http://dx.doi.org/10.1016/j.diff.2012.09.003
  • Shrestha A, Moe K, Luukko K, Taniguchi M, Kettunen P. Sema3A chemorepellant regulates the timing and patterning of dental nerves during development of incisor tooth germ. Cell Tissue Res 2014; 357:15-29; PMID:24752460
  • Erdelyi G, Fried K, Hildebrand C. Nerve growth to tooth buds after homotopic or heterotopic autotransplantation. Brain Res 1987; 430:39-47; PMID:3594271; http://dx.doi.org/10.1016/0165-3806(87)90174-X
  • Fried K, Erdelyi G. Inferior alveolar nerve regeneration and incisor pulpal reinnervation following intramandibular neurotomy in the cat. Brain Res 1982; 244:259-68; PMID:7116174; http://dx.doi.org/10.1016/0006-8993(82)90084-1
  • Holland GR, Robinson PP. Pulp re-innervation in re-implanted canine teeth of the cat. Arch Oral Biol 1987; 32:593-7; PMID:3479101; http://dx.doi.org/10.1016/0003-9969(87)90069-0
  • Lillesaar C, Fried K. Neurites from trigeminal ganglion explants grown in vitro are repelled or attracted by tooth-related tissues depending on developmental stage. Neuroscience 2004; 125:149-61; PMID:15051154; http://dx.doi.org/10.1016/j.neuroscience.2004.01.008
  • Luukko K, Arumae U, Karavanov A, Moshnyakov M, Sainio K, Sariola H, Saarma M, Thesleff I. Neurotrophin mRNA expression in the developing tooth suggests multiple roles in innervation and organogenesis. Dev Dyn 1997; 210:117-29; PMID:9337133; http://dx.doi.org/10.1002/(SICI)1097-0177(199710)210:2%3c117::AID-AJA5%3e3.0.CO;2-J
  • Loes S, Kettunen P, Kvinnsland H, Luukko K. Mouse rudimentary diastema tooth primordia are devoid of peripheral nerve fibers. Anat Embryol 2002; 205:187-91; PMID:12107488; http://dx.doi.org/10.1007/s00429-002-0247-8
  • Thoenen H, Sendtner M. Neurotrophins: from enthusiastic expectations through sobering experiences to rational therapeutic approaches. Nat Neurosci 2002; 5 (Suppl):1046-50; PMID:12403983; http://dx.doi.org/10.1038/nn938
  • Nosrat CA, Fried K, Lindskog S, Olson L. Cellular expression of neurotrophin mRNAs during tooth development. Cell Tissue Res 1997; 290:569-80; PMID:9369532; http://dx.doi.org/10.1007/s004410050962
  • Naftel JP, Qian XB, Bernanke JM. Effects of postnatal anti-nerve growth factor serum exposure on development of apical nerves of the rat molar. Brain Res Dev Brain Res 1994; 80:54-62; PMID:7955360; http://dx.doi.org/10.1016/0165-3806(94)90089-2
  • Matsuo S, Ichikawa H, Henderson TA, Silos-Santiago I, Barbacid M, Arends JJ, Jacquin MF. trkA modulation of developing somatosensory neurons in oro-facial tissues: tooth pulp fibers are absent in trkA knockout mice. Neuroscience 2001; 105:747-60; PMID:11516838; http://dx.doi.org/10.1016/S0306-4522(01)00223-8
  • Qian XB, Naftel JP. Effects of neonatal exposure to anti-nerve growth factor on the number and size distribution of trigeminal neurones projecting to the molar dental pulp in rats. Arch Oral Biol 1996; 41:359-67; PMID:8771327; http://dx.doi.org/10.1016/0003-9969(95)00128-X
  • Kitsukawa T, Shimizu M, Sanbo M, Hirata T, Taniguchi M, Bekku Y, Yagi T, Fujisawa H. Neuropilin-semaphorin III/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron 1997; 19:995-1005; PMID:9390514; http://dx.doi.org/10.1016/S0896-6273(00)80392-X
  • Taniguchi M, Yuasa S, Fujisawa H, Naruse I, Saga S, Mishina M, Yagi T. Disruption of semaphorin III/D gene causes severe abnormality in peripheral nerve projection. Neuron 1997; 19:519-30; PMID:9331345; http://dx.doi.org/10.1016/S0896-6273(00)80368-2
  • Tran TS, Kolodkin AL, Bharadwaj R. Semaphorin regulation of cellular morphology. Annu Rev Cell Dev Biol 2007; 23:263-92; PMID:17539753; http://dx.doi.org/10.1146/annurev.cellbio.22.010605.093554
  • Fujisawa H. Discovery of semaphorin receptors, neuropilin and plexin, and their functions in neural development. J Neurobiol 2004; 59:24-33; PMID:15007824; http://dx.doi.org/10.1002/neu.10337
  • Yazdani U, Terman JR. The semaphorins. Genome Biol 2006; 7:211; PMID:16584533; http://dx.doi.org/10.1186/gb-2006-7-3-211
  • Hayashi M, Nakashima T, Taniguchi M, Kodama T, Kumanogoh A, Takayanagi H. Osteoprotection by semaphorin 3A. Nature 2012; 485:69-74; PMID:22522930; http://dx.doi.org/10.1038/nature11000
  • Loes S, Kettunen P, Kvinnsland IH, Taniguchi M, Fujisawa H, Luukko K. Expression of class 3 semaphorins and neuropilin receptors in the developing mouse tooth. Mech Dev 2001; 101:191-4; PMID:11231073; http://dx.doi.org/10.1016/S0925-4773(00)00545-1
  • Moe K, Shrestha A, Kvinnsland IH, Luukko K, Kettunen P. Developmentally regulated expression of Sema3A chemorepellant in the developing mouse incisor. Acta Odontol Scand 2012; 70:184-9; PMID:21793640; http://dx.doi.org/10.3109/00016357.2011.600717
  • Wada N, Maeda H, Hasegawa D, Gronthos S, Bartold PM, Menicanin D, Fujii S, Yoshida S, Tomokiyo A, Monnouchi S, et al. Semaphorin 3A induces mesenchymal-stem-like properties in human periodontal ligament cells. Stem Cell Dev 2014; 23:2225-36; PMID:24380401; http://dx.doi.org/10.1089/scd.2013.0405
  • Mina M, Kollar EJ. The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Arch Oral Biol 1987; 32:123-7; PMID:3478009; http://dx.doi.org/10.1016/0003-9969(87)90055-0
  • Brook AH, Jernvall J, Smith RN, Hughes TE, Townsend GC. The dentition: the outcomes of morphogenesis leading to variations of tooth number, size and shape. Aust Den J 2014; 59 (Suppl 1):131-42; PMID:24646162; http://dx.doi.org/10.1111/adj.12160
  • Cobourne MT, Sharpe PT. Diseases of the tooth: the genetic and molecular basis of inherited anomalies affecting the dentition. Wiley Interdiscip Rev Dev Biol 2013; 2:183-212; PMID:24009033; http://dx.doi.org/10.1002/wdev.66
  • Weiss A, Attisano L. The TGFbeta superfamily signaling pathway. Wiley Interdiscip Rev Dev Biol 2013; 2:47-63; PMID:23799630; http://dx.doi.org/10.1002/wdev.86
  • Fjeld K, Kettunen P, Furmanek T, Kvinnsland IH, Luukko K. Dynamic expression of Wnt signaling-related Dickkopf1, −2, and −3 mRNAs in the developing mouse tooth. Dev Dyn 2005; 233:161-6; PMID:15759274; http://dx.doi.org/10.1002/dvdy.20285
  • Liu F, Chu EY, Watt B, Zhang Y, Gallant NM, Andl T, Yang SH, Lu MM, Piccolo S, Schmidt-Ullrich R, et al. Wnt/beta-catenin signaling directs multiple stages of tooth morphogenesis. Dev Biol 2008; 313:210-24; PMID:18022614; http://dx.doi.org/10.1016/j.ydbio.2007.10.016
  • van Genderen C, Okamura RM, Farinas I, Quo RG, Parslow TG, Bruhn L, Grosschedl R. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev 1994; 8:2691-703; PMID:7958926; http://dx.doi.org/10.1101/gad.8.22.2691
  • Andl T, Reddy ST, Gaddapara T, Millar SE. WNT signals are required for the initiation of hair follicle development. Dev Cell 2002; 2:643-53; PMID:12015971; http://dx.doi.org/10.1016/S1534-5807(02)00167-3
  • Vaahtokari A, Vainio S, Thesleff I. Associations between transforming growth factor beta 1 RNA expression and epithelial-mesenchymal interactions during tooth morphogenesis. Development 1991; 113:985-94; PMID:1726565
  • Buchman VL, Sporn M, Davies AM. Role of transforming growth factor-beta isoforms in regulating the expression of nerve growth factor and neurotrophin-3 mRNA levels in embryonic cutaneous cells at different stages of development. Development 1994; 120:1621-9; PMID:8050368
  • Martin A, Unda FJ, Begue-Kirn C, Ruch JV, Arechaga J. Effects of aFGF, bFGF, TGFbeta1 and IGF-I on odontoblast differentiation in vitro. Eur J Oral Sci 1998; 106 (Suppl 1):117-21; PMID:9541212; http://dx.doi.org/10.1111/j.1600-0722.1998.tb02162.x
  • Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip Rev Dev Biol 2015; 4:215-66; PMID:25772309; http://dx.doi.org/10.1002/wdev.176
  • Ohuchi H, Hori Y, Yamasaki M, Harada H, Sekine K, Kato S, Itoh N. FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem Biophys Res Commun 2000; 277:643-9; PMID:11062007; http://dx.doi.org/10.1006/bbrc.2000.3721
  • Jernvall J, Kettunen P, Karavanova I, Martin LB, Thesleff I. Evidence for the role of the enamel knot as a control center in mammalian tooth cusp formation: non-dividing cells express growth stimulating Fgf-4 gene. Int J Dev Biol 1994; 38:463-9; PMID:7848830
  • Thesleff I, Jernvall J. The enamel knot: a putative signaling center regulating tooth development. Cold Spring Harb Symp Quant Biol 1997; 62:257-67; PMID:9598359; http://dx.doi.org/10.1101/SQB.1997.062.01.032
  • Luukko K, Loes S, Furmanek T, Fjeld K, Kvinnsland IH, Kettunen P. Identification of a novel putative signaling center, the tertiary enamel knot in the postnatal mouse molar tooth. Mech Dev 2003; 120:270-6; PMID:12591596; http://dx.doi.org/10.1016/S0925-4773(02)00458-6
  • Salazar-Ciudad I, Jernvall J. A gene network model accounting for development and evolution of mammalian teeth. Proc Natl Acad Sci U S A 2002; 99:8116-20; PMID:12048258; http://dx.doi.org/10.1073/pnas.132069499
  • Jussila M, Thesleff I. Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages. Cold Spring Harb Perspect Biol 2012; 4:a008425; PMID:22415375
  • Balic A, Thesleff I. Chapter Seven - Tissue Interactions Regulating Tooth Development and Renewal. In: Yang C, ed. Current topics in developmental biology. Academic Press, 2015:157-86.
  • Vainio S, Karavanova I, Jowett A, Thesleff I. Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell 1993; 75:45-58; PMID:8104708; http://dx.doi.org/10.1016/S0092-8674(05)80083-2
  • Kratochwil K, Galceran J, Tontsch S, Roth W, Grosschedl R. FGF4, a direct target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1(−/−) mice. Genes Dev 2002; 16:3173-85; PMID:12502739; http://dx.doi.org/10.1101/gad.1035602
  • Klein OD, Minowada G, Peterkova R, Kangas A, Yu BD, Lesot H, Peterka M, Jernvall J, Martin GR. Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Dev Cell 2006; 11:181-90; PMID:16890158; http://dx.doi.org/10.1016/j.devcel.2006.05.014
  • Thesleff I, Sharpe P. Signalling networks regulating dental development. Mech Dev 1997; 67:111-23; PMID:9392510; http://dx.doi.org/10.1016/S0925-4773(97)001-15-9
  • Bei M. Molecular genetics of tooth development. Cur Opin Genet Dev 2009; 19:504-10; PMID:19875280; http://dx.doi.org/10.1016/j.gde.2009.09.002
  • Tummers M, Thesleff I. The importance of signal pathway modulation in all aspects of tooth development. J Exp Zool B Mol Dev Evol 2009; 312B:309-19; PMID:19156667; http://dx.doi.org/10.1002/jez.b.21280

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.