2,399
Views
8
CrossRef citations to date
0
Altmetric
Review

The aminoacyl-tRNA synthetases of Drosophila melanogaster

, , &
Pages 53-61 | Received 18 Aug 2015, Accepted 18 Sep 2015, Published online: 13 Jan 2016

References

  • Schimmel PR, Soll D. Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs. Annu Rev Biochem 1979; 48:601-48; PMID:382994; http://dx.doi.org/10.1146/annurev.bi.48.070179.003125
  • Schimmel P. Development of tRNA synthetases and connection to genetic code and disease. Protein Sci 2008; 17:1643-52; PMID:18765819; http://dx.doi.org/10.1110/ps.037242.108
  • Ibba M, Soll D. Aminoacyl-tRNA synthesis. Annu Rev Biochem 2000; 69:617-50; PMID:10966471; http://dx.doi.org/10.1146/annurev.biochem.69.1.617
  • de Duve C. Transfer RNAs: the second genetic code. Nature 1988; 333:117-8; PMID:3367984; http://dx.doi.org/10.1038/333117a0
  • Arnez JG, Moras D. Structural and functional considerations of the aminoacylation reaction. Trends Biochem Sci 1997; 22:211-6; PMID:9204708; http://dx.doi.org/10.1016/S0968-0004(97)01052-9
  • Antonellis A, Green ED. The role of aminoacyl-tRNA synthetases in genetic diseases. Annu Rev Genomics Hum Genet 2008; 9:87-107; PMID:18767960; http://dx.doi.org/10.1146/annurev.genom.9.081307.164204
  • Yao P, Fox PL. Aminoacyl-tRNA synthetases in medicine and disease. EMBO Mol Med 2013; 5:332-43; PMID:23427196; http://dx.doi.org/10.1002/emmm.201100626
  • Brown MV, Reader JS, Tzima E. Mammalian aminoacyl-tRNA synthetases: cell signaling functions of the protein translation machinery. Vasc Pharmacol 2010; 52:21-6; PMID:19962454; http://dx.doi.org/10.1016/j.vph.2009.11.009
  • Kim S, You S, Hwang D. Aminoacyl-tRNA synthetases and tumorigenesis: more than housekeeping. Nat Rev Cancer 2011; 11:708-18; PMID:21941282; http://dx.doi.org/10.1038/nrc3124
  • Dolde C, Lu J, Suter B. Cross talk between cellular regulatory networks mediated by shared proteins. Adv Biol 2014; 2014: Article ID 274196; http://dx.doi.org/10.1155/2014/274196
  • Guo M, Yang XL, Schimmel P. New functions of aminoacyl-tRNA synthetases beyond translation. Nat Rev Mol Cell Biol 2010; 11:668-74; PMID:20700144; http://dx.doi.org/10.1038/nrm2956
  • Wallen RC, Antonellis A. To charge or not to charge: mechanistic insights into neuropathy-associated tRNA synthetase mutations. Curr Opin Genet Dev 2013; 23:302-9; PMID:23465884; http://dx.doi.org/10.1016/j.gde.2013.02.002
  • Konovalova S, Tyynismaa H. Mitochondrial aminoacyl-tRNA synthetases in human disease. Mol Genet Metab 2013; 108:206-11; PMID:23433712; http://dx.doi.org/10.1016/j.ymgme.2013.01.010
  • Bilen J, Bonini NM. Drosophila as a model for human neurodegenerative disease. Annu Rev Genet 2005; 39:153-71; PMID:16285856; http://dx.doi.org/10.1146/annurev.genet.39.110304.095804
  • Leitao-Goncalves R, Ermanoska B, Jacobs A, De Vriendt E, Timmerman V, Lupski JR, Callaerts P, Jordanova A. Drosophila as a platform to predict the pathogenicity of novel aminoacyl-tRNA synthetase mutations in CMT. Amino Acids 2012; 42:1661-8; PMID:21384131; http://dx.doi.org/10.1007/s00726-011-0868-4
  • Lu J, Bergert M, Walther A, Suter B. Double-sieving-defective aminoacyl-tRNA synthetase causes protein mistranslation and affects cellular physiology and development. Nat Commun 2014; 5:5650; PMID:25427601; http://dx.doi.org/10.1038/ncomms6650
  • Seshaiah P, Andrew DJ. WRS-85D: A tryptophanyl-tRNA synthetase expressed to high levels in the developing Drosophila salivary gland. Mol Biol Cell 1999; 10:1595-608; PMID:10233165; http://dx.doi.org/10.1091/mbc.10.5.1595
  • dos Santos G, Schroeder AJ, Goodman JL, Strelets VB, Crosby MA, Thurmond J, Emmert DB, Gelbart WM, FlyBase Consortium. FlyBase: introduction of the Drosophila melanogaster Release 6 reference genome assembly and large-scale migration of genome annotations. Nucleic Acids Res 2015; 43:D690-7; PMID:25398896; http://dx.doi.org/10.1093/nar/gku1099
  • Gray KA, Yates B, Seal RL, Wright MW, Bruford EA. Genenames.org: the HGNC resources in 2015. Nucleic Acids Res 2015; 43:D1079-85; PMID:25361968; http://dx.doi.org/10.1093/nar/gku1071
  • Cerini C, Kerjan P, Astier M, Gratecos D, Mirande M, Semeriva M. A component of the multisynthetase complex is a multifunctional aminoacyl-tRNA synthetase. EMBO J 1991; 10:4267-77; PMID:1756734
  • Guitart T, Leon Bernardo T, Sagales J, Stratmann T, Bernues J, Ribas de Pouplana L. New aminoacyl-tRNA synthetase-like protein in insecta with an essential mitochondrial function. J Biol Chem 2010; 285:38157-66; PMID:20870726; http://dx.doi.org/10.1074/jbc.M110.167486
  • Lund E, Dahlberg JE. Proofreading and aminoacylation of tRNAs before export from the nucleus. Science 1998; 282:2082-5; PMID:9851929; http://dx.doi.org/10.1126/science.282.5396.2082
  • Cerini C, Semeriva M, Gratecos D. Evolution of the aminoacyl-tRNA synthetase family and the organization of the Drosophila glutamyl-prolyl-tRNA synthetase gene. Intron/exon structure of the gene, control of expression of the two mRNAs, selective advantage of the multienzyme complex. Eur J Biochem 1997; 244:176-85; PMID:9063462; http://dx.doi.org/10.1111/j.1432-1033.1997.00176.x
  • Berthonneau E, Mirande M. A gene fusion event in the evolution of aminoacyl-tRNA synthetases. FEBS Lett 2000; 470:300-4; PMID:10745085; http://dx.doi.org/10.1016/S0014-5793(00)01343-0
  • Kerjan P, Cerini C, Semeriva M, Mirande M. The multienzyme complex containing nine aminoacyl-tRNA synthetases is ubiquitous from Drosophila to mammals. Biochim Biophys Acta 1994; 1199:293-7; PMID:8161568; http://dx.doi.org/10.1016/0304-4165(94)90009-4
  • Stitzinger SM, Pellicena-Palle A, Albrecht EB, Gajewski KM, Beckingham KM, Salz HK. Mutations in the predicted aspartyl tRNA synthetase of Drosophila are lethal and function as dosage-sensitive maternal modifiers of the sex determination gene Sex-lethal. Mol Gen Genet 1999; 261:142-51; PMID:10071220; http://dx.doi.org/10.1007/s004380050951
  • Galloni M, Edgar BA. Cell-autonomous and non-autonomous growth-defective mutants of Drosophila melanogaster. Development 1999; 126:2365-75; PMID:10225996
  • Arsham AM, Neufeld TP. A genetic screen in Drosophila reveals novel cytoprotective functions of the autophagy-lysosome pathway. PLoS One 2009; 4:e6068; PMID:19562034; http://dx.doi.org/10.1371/journal.pone.0006068
  • Claros MG, Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 1996; 241:779-86; PMID:8944766; http://dx.doi.org/10.1111/j.1432-1033.1996.00779.x
  • Wilcox M, Nirenberg M. Transfer RNA as a cofactor coupling amino acid synthesis with that of protein. Proc Natl Acad Sci U S A 1968; 61:229-36; PMID:4972364; http://dx.doi.org/10.1073/pnas.61.1.229
  • Schon A, Kannangara CG, Gough S, Soll D. Protein biosynthesis in organelles requires misaminoacylation of tRNA. Nature 1988; 331:187-90; PMID:3340166; http://dx.doi.org/10.1038/331187a0
  • Nagao A, Suzuki T, Katoh T, Sakaguchi Y, Suzuki T. Biogenesis of glutaminyl-mt tRNAGln in human mitochondria. Proc Natl Acad Sci U S A 2009; 106:16209-14; PMID:19805282; http://dx.doi.org/10.1073/pnas.0907602106
  • Morris JZ, Bergman L, Kruyer A, Gertsberg M, Guigova A, Arias R, Pogorzelska M. Mutations in the Drosophila mitochondrial tRNA amidotransferase, bene/gatA, cause growth defects in mitotic and endoreplicating tissues. Genetics 2008; 178:979-87; PMID:18245325; http://dx.doi.org/10.1534/genetics.107.084376
  • Bullard JM, Cai YC, Demeler B, Spremulli LL. Expression and characterization of a human mitochondrial phenylalanyl-tRNA synthetase. J Mol Biol 1999; 288:567-77; PMID:10329163; http://dx.doi.org/10.1006/jmbi.1999.2708
  • Liao TS, Call GB, Guptan P, Cespedes A, Marshall J, Yackle K, Owusu-Ansah E, Mandal S, Fang QA, Goodstein GL, et al. An efficient genetic screen in Drosophila to identify nuclear-encoded genes with mitochondrial function. Genetics 2006; 174:525-33; PMID:16849596; http://dx.doi.org/10.1534/genetics.106.061705
  • Bayat V, Thiffault I, Jaiswal M, Tetreault M, Donti T, Sasarman F, Bernard G, Demers-Lamarche J, Dicaire MJ, Mathieu J, et al. Mutations in the mitochondrial methionyl-tRNA synthetase cause a neurodegenerative phenotype in flies and a recessive ataxia (ARSAL) in humans. PLoS Biol 2012; 10:e1001288; PMID:22448145; http://dx.doi.org/10.1371/journal.pbio.1001288
  • Guitart T, Picchioni D, Pineyro D, Ribas de Pouplana L. Human mitochondrial disease-like symptoms caused by a reduced tRNA aminoacylation activity in flies. Nucleic Acids Res 2013; 41:6595-608; PMID:23677612; http://dx.doi.org/10.1093/nar/gkt402
  • Lovato MA, Chihade JW, Schimmel P. Translocation within the acceptor helix of a major tRNA identity determinant. EMBO J 2001; 20:4846-53; PMID:11532948; http://dx.doi.org/10.1093/emboj/20.17.4846
  • Lovato MA, Swairjo MA, Schimmel P. Positional recognition of a tRNA determinant dependent on a peptide insertion. Mol Cell 2004; 13:843-51; PMID:15053877; http://dx.doi.org/10.1016/S1097-2765(04)00125-X
  • Hoekstra LA, Siddiq MA, Montooth KL. Pleiotropic effects of a mitochondrial-nuclear incompatibility depend upon the accelerating effect of temperature in Drosophila. Genetics 2013; 195:1129-39; PMID:24026098; http://dx.doi.org/10.1534/genetics.113.154914
  • Meiklejohn CD, Holmbeck MA, Siddiq MA, Abt DN, Rand DM, Montooth KL. An Incompatibility between a mitochondrial tRNA and its nuclear-encoded tRNA synthetase compromises development and fitness in Drosophila. PLoS Genet 2013; 9:e1003238; PMID:23382693; http://dx.doi.org/10.1371/journal.pgen.1003238
  • Holmbeck MA, Donner JR, Villa-Cuesta E, Rand DM. A Drosophila model for mito-nuclear diseases generated by an incompatible interaction between tRNA and tRNA synthetase. Dis Models Mech 2015; 8:843-54; PMID:26035388; http://dx.doi.org/10.1242/dmm.019323
  • Chihara T, Luginbuhl D, Luo L. Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization. Nat Neurosci 2007; 10:828-37; PMID:17529987; http://dx.doi.org/10.1038/nn1910
  • Tolkunova E, Park H, Xia J, King MP, Davidson E. The human lysyl-tRNA synthetase gene encodes both the cytoplasmic and mitochondrial enzymes by means of an unusual alternative splicing of the primary transcript. J Biol Chem 2000; 275:35063-9; PMID:10952987; http://dx.doi.org/10.1074/jbc.M006265200
  • Reilly MM, Murphy SM, Laura M. Charcot-Marie-Tooth disease. J Peripher Nerv Syst 2011; 16:1-14; PMID:21504497; http://dx.doi.org/10.1111/j.1529-8027.2011.00324.x
  • Jordanova A, Irobi J, Thomas FP, Van Dijck P, Meerschaert K, Dewil M, Dierick I, Jacobs A, De Vriendt E, Guergueltcheva V, et al. Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Nat Genet 2006; 38:197-202; PMID:16429158; http://dx.doi.org/10.1038/ng1727
  • Storkebaum E, Leitao-Goncalves R, Godenschwege T, Nangle L, Mejia M, Bosmans I, Ooms T, Jacobs A, Van Dijck P, Yang XL, et al. Dominant mutations in the tyrosyl-tRNA synthetase gene recapitulate in Drosophila features of human Charcot-Marie-Tooth neuropathy. Proc Natl Acad Sci U S A 2009; 106:11782-7; PMID:19561293; http://dx.doi.org/10.1073/pnas.0905339106
  • Antonellis A, Ellsworth RE, Sambuughin N, Puls I, Abel A, Lee-Lin SQ, Jordanova A, Kremensky I, Christodoulou K, Middleton LT, et al. Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. Am J Hum Genet 2003; 72:1293-9; PMID:12690580; http://dx.doi.org/10.1086/375039
  • Ermanoska B, Motley WW, Leitao-Goncalves R, Asselbergh B, Lee LH, De Rijk P, Sleegers K, Ooms T, Godenschwege TA, Timmerman V, et al. CMT-associated mutations in glycyl- and tyrosyl-tRNA synthetases exhibit similar pattern of toxicity and share common genetic modifiers in Drosophila. Neurobiol Dis 2014; 68:180-9; PMID:24807208; http://dx.doi.org/10.1016/j.nbd.2014.04.020
  • Grice SJ, Sleigh JN, Motley WW, Liu JL, Burgess RW, Talbot K, Cader MZ. Dominant, toxic gain-of-function mutations in gars lead to non-cell autonomous neuropathology. Hum Mol Genet 2015; 24:4397-406; PMID:25972375; http://dx.doi.org/10.1093/hmg/ddv176
  • Niehues S, Bussmann J, Steffes G, Erdmann I, Kohrer C, Sun L, Wagner M, Schäfer K, Wang G, Koerdt SN, et al. Impaired protein translation in Drosophila models for Charcot-Marie-Tooth neuropathy caused by mutant tRNA synthetases. Nat Commun 2015; 6:7520; PMID:26138142; http://dx.doi.org/10.1038/ncomms8520
  • Otani A, Slike BM, Dorrell MI, Hood J, Kinder K, Ewalt KL, Cheresh D, Schimmel P, Friedlander M. A fragment of human TrpRS as a potent antagonist of ocular angiogenesis. Proc Natl Acad Sci U S A 2002; 99:178-83; PMID:11773625; http://dx.doi.org/10.1073/pnas.012601899
  • Cheng G, Zhang H, Yang X, Tzima E, Ewalt KL, Schimmel P, Faber JE. Effect of mini-tyrosyl-tRNA synthetase on ischemic angiogenesis, leukocyte recruitment, and vascular permeability. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1138-46; PMID:18753262; http://dx.doi.org/10.1152/ajpregu.90519.2008
  • Loytynoja A, Vilella AJ, Goldman N. Accurate extension of multiple sequence alignments using a phylogeny-aware graph algorithm. Bioinformatics 2012; 28:1684-91; PMID:22531217; http://dx.doi.org/10.1093/bioinformatics/bts198
  • Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972-3; PMID:19505945; http://dx.doi.org/10.1093/bioinformatics/btp348
  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307-21; PMID:20525638; http://dx.doi.org/10.1093/sysbio/syq010
  • Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003; 52:696-704; PMID:14530136; http://dx.doi.org/10.1080/10635150390235520
  • Hordijk W, Gascuel O. Improving the efficiency of SPR moves in phylogenetic tree search methods based on maximum likelihood. Bioinformatics 2005; 21:4338-47; PMID:16234323; http://dx.doi.org/10.1093/bioinformatics/bti713