1,439
Views
5
CrossRef citations to date
0
Altmetric
Extra View

Insights into ALS pathomechanisms: from flies to humans

&
Pages 91-98 | Received 03 Sep 2015, Accepted 26 Oct 2015, Published online: 13 Jan 2016

References

  • Robberecht W, Philips T. The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci 2013; 14:248-64; PMID:23463272; http://dx.doi.org/10.1038/nrn3430.
  • Charcot J. De la Sclérose Latérale Amyotrophique. Prog Méd 1874; 2:325-7.
  • Charcot J, Joffroy A. Deux cas d'atrophie musculaire progressive avec lesion de la substance grise et des faisceaux antero-latereaux de la moelle épinière. Arch Physiol Norm Pathol 1869; 3:744-54.
  • Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP, Deng HX. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362:59-62; PMID:8446170; http://dx.doi.org/10.1038/362059a0.
  • Julien JP. Amyotrophic lateral sclerosis. Unfolding the toxicity of the misfolded. Cell 2001; 104:581-91; PMID:11239414; http://dx.doi.org/10.1016/S0092-8674(01)00244-6.
  • Casci I, Pandey UB. A fruitful endeavor: modeling ALS in the fruit fly. Brain Res 2015; 1607:47-74; PMID:25289585; http://dx.doi.org/10.1016/j.brainres.2014.09.064.
  • Parkes TL, Elia AJ, Dickinson D, Hilliker AJ, Phillips JP, Boulianne GL. Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat Genet 1998; 19:171-4; PMID:9620775; http://dx.doi.org/10.1038/534.
  • Mockett RJ, Radyuk SN, Benes JJ, Orr WC, Sohal RS. Phenotypic effects of familial amyotrophic lateral sclerosis mutant Sod alleles in transgenic Drosophila. Proc Natl Acad Sci U S A 2003; 100:301-6; PMID:12502789; http://dx.doi.org/10.1073/pnas.0136976100.
  • Elia AJ, Parkes TL, Kirby K, St George-Hyslop P, Boulianne GL, Phillips JP, Hilliker AJ. Expression of human FALS SOD in motorneurons of Drosophila. Free Radic Biol Med 1999; 26:1332-8; PMID:10381207; http://dx.doi.org/10.1016/S0891-5849(98)00333-5.
  • Watson MR, Lagow RD, Xu K, Zhang B, Bonini NM. A drosophila model for amyotrophic lateral sclerosis reveals motor neuron damage by human SOD1. J Biol Chem 2008; 283:24972-81; PMID:18596033; http://dx.doi.org/10.1074/jbc.M804817200.
  • Bahadorani S, Mukai ST, Rabie J, Beckman JS, Phillips JP, Hilliker AJ. Expression of zinc-deficient human superoxide dismutase in Drosophila neurons produces a locomotor defect linked to mitochondrial dysfunction. Neurobiol Aging 2013; 34:2322-30; PMID:23601674; http://dx.doi.org/10.1016/j.neurobiolaging.2013.03.024.
  • Nishimura AL, Mitne-Neto M, Silva HCA, Richieri-Costa A, Middleton S, Cascio D, Kok F, Oliveira JRM, Gillingwater T, Webb J, et al. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 2004; 75:822-31; http://dx.doi.org/10.1086/425287.
  • Chai A, Withers J, Koh YH, Parry K, Bao H, Zhang B, Budnik V, Pennetta G. hVAPB, the causative gene of a heterogeneous group of motor neuron diseases in humans, is functionally interchangeable with its Drosophila homologue DVAP-33A at the neuromuscular junction. Hum Mol Genet 2008; 17:266-80; PMID: 17947296; http://dx.doi.org/10.1093/hmg/ddm303.
  • Tsuda H, Han SM, Yang Y, Tong C, Lin YQ, Mohan K, Haueter C, Zoghbi A, Harati Y, Kwan J, et al. The amyotrophic lateral sclerosis 8 protein VAPB is cleaved, secreted, and acts as a ligand for Eph receptors. Cell 2008; 133:963-77; PMID:18555774; http://dx.doi.org/10.1016/j.cell.2008.04.039.
  • Ratnaparkhi A, Lawless GM, Schweizer FE, Golshani P, Jackson GR. A Drosophila model of ALS: human ALS-associated mutation in VAP33A suggests a dominant negative mechanism. PloS One 2008; 3:e2334; PMID:18523548; http://dx.doi.org/10.1371/journal.pone.0002334.
  • Forrest S, Chai A, Sanhueza M, Marescotti M, Parry K, Georgiev A, Sahota V, Mendez-Castro R, Pennetta G. Increased levels of phosphoinositides cause neurodegeneration in a Drosophila model of amyotrophic lateral sclerosis. Hum Mol Genet 2013; 22:2689-704; PMID:23492670; http://dx.doi.org/10.1093/hmg/ddt118.
  • Chen H-J, Anagnostou G, Chai A, Withers J, Morris A, Adhikaree J, Pennetta G, de Belleroche JS. Characterization of the properties of a novel mutation in VAPB in familial amyotrophic lateral sclerosis. J Biol Chem 2010; 285:40266-81; PMID:20940299; http://dx.doi.org/10.1074/jbc.M110.161398.
  • Sanhueza M, Zechini L, Gillespie T, Pennetta G. Gain-of-function mutations in the ALS8 causative gene VAPB have detrimental effects on neurons and muscles. Biol Open 2014; 3:59-71; PMID:24326187; http://dx.doi.org/10.1242/bio.20137070.
  • Pennetta G, Hiesinger PR, Fabian-Fine R, Meinertzhagen IA, Bellen HJ. Drosophila VAP-33A directs bouton formation at neuromuscular junctions in a dosage-dependent manner. Neuron 2002; 35:291-306; PMID:12160747; http://dx.doi.org/10.1016/S0896-6273(02)00769-9.
  • Han SM, Tsuda H, Yang Y, Vibbert J, Cottee P, Lee S-J, Winek J, Haueter C, Bellen HJ, Miller MA. Secreted VAPB/ALS8 major sperm protein domains modulate mitochondrial localization and morphology via growth cone guidance receptors. Dev Cell 2012; 22:348-62; PMID:22264801; http://dx.doi.org/10.1016/j.devcel.2011.12.009.
  • Moustaqim-Barrette A, Lin YQ, Pradhan S, Neely GG, Bellen HJ, Tsuda H. The amyotrophic lateral sclerosis 8 protein, VAP, is required for ER protein quality control. Hum Mol Genet 2014; 23:1975-89; PMID:24271015; http://dx.doi.org/10.1093/hmg/ddt594.
  • Yang Z, Huh SU, Drennan JM, Kathuria H, Martinez JS, Tsuda H, Hall MC, Clemens JC. Drosophila Vap-33 is required for axonal localization of Dscam isoforms. J Neurosci of J Soc Neurosci 2012; 32:17241-50; PMID:23197716; http://dx.doi.org/10.1523/JNEUROSCI.2834-12.2012.
  • Ling S-C, Polymenidou M, Cleveland DW. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 2013; 79:416-38; PMID:23931993; http://dx.doi.org/10.1016/j.neuron.2013.07.033.
  • Kanekura K, Nishimoto I, Aiso S, Matsuoka M. Characterization of amyotrophic lateral sclerosis-linked P56S mutation of vesicle-associated membrane protein-associated protein B (VAPB/ALS8). J Biol Chem 2006; 281:30223-33; PMID:16891305; http://dx.doi.org/10.1074/jbc.M605049200.
  • Kuijpers M, Yu KL, Teuling E, Akhmanova A, Jaarsma D, Hoogenraad CC. The ALS8 protein VAPB interacts with the ER-Golgi recycling protein YIF1A and regulates membrane delivery into dendrites. EMBO J 2013; 32:2056-72; PMID:23736259; http://dx.doi.org/10.1038/emboj.2013.131.
  • Anagnostou G, Akbar MT, Paul P, Angelinetta C, Steiner TJ, de Belleroche J. Vesicle associated membrane protein B (VAPB) is decreased in ALS spinal cord. Neurobiol Aging 2010; 31:969-85; http://dx.doi.org/10.1016/j.neurobiolaging.2008.07.005.
  • Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J, Liang TY, Ling S-C, Sun E, Wancewicz E, Mazur C, et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci 2011; 14:459-68; PMID:21358643; http://dx.doi.org/10.1038/nn.2779.
  • Teuling E, Ahmed S, Haasdijk E, Demmers J, Steinmetz MO, Akhmanova A, Jaarsma D, Hoogenraad CC. Motor neuron disease-associated mutant vesicle-associated membrane protein-associated protein (VAP) B recruits wild-type VAPs into endoplasmic reticulum-derived tubular aggregates. J Neurosci of J Soc Neurosci 2007; 27:9801-15; PMID:17804640; http://dx.doi.org/10.1523/JNEUROSCI.2661-07.2007.
  • Tudor EL, Galtrey CM, Perkinton MS, Lau K-F, De Vos KJ, Mitchell JC, Ackerley S, Hortobágyi T, Vámos E, Leigh PN, et al. Amyotrophic lateral sclerosis mutant vesicle-associated membrane protein-associated protein-B transgenic mice develop TAR-DNA-binding protein-43 pathology. Neuroscience 2010; 167:774-85; http://dx.doi.org/10.1016/j.neuroscience.2010.02.035.
  • Lagier-Tourenne C, Polymenidou M, Hutt KR, Vu AQ, Baughn M, Huelga SC, Clutario KM, Ling S-C, Liang TY, Mazur C, et al. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat Neurosci 2012; 15:1488-97; PMID:23023293; http://dx.doi.org/10.1038/nn.3230.
  • Bilen J, Bonini NM. Drosophila as a model for human neurodegenerative disease. Annu Rev Genet 2005; 39:153-71; http://dx.doi.org/10.1146/annurev.genet.39.110304.095804.
  • Ryder E, Ashburner M, Bautista-Llacer R, Drummond J, Webster J, Johnson G, Morley T, Chan YS, Blows F, Coulson D, et al. The DrosDel deletion collection: a Drosophila genomewide chromosomal deficiency resource. Genetics 2007; 177:615-29; http://dx.doi.org/10.1534/genetics.107.076216.
  • Pennetta G, Pauli D. stand still, a Drosophila gene involved in the female germline for proper survival, sex determination and differentiation. Genetics 1997; 145:975-87; PMID:9093851.
  • Moazed D, O'Farrell PH. Maintenance of the engrailed expression pattern by Polycomb group genes in Drosophila. Dev Camb Engl 1992; 116:805-10.
  • Sanhueza M, Chai A, Smith C, McCray BA, Simpson TI, Taylor JP, Pennetta G. Network analyses reveal novel aspects of ALS pathogenesis. PLoS Genet 2015; 11:e1005107; PMID:25826266.
  • Alexa A, Rahnenführer J, Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinforma Oxf Engl 2006; 22:1600-7; http://dx.doi.org/10.1093/bioinformatics/btl140.
  • Zuberi K, Franz M, Rodriguez H, Montojo J, Lopes CT, Bader GD, Morris Q. GeneMANIA prediction server 2013 update. Nucleic Acids Res 2013; 41:W115-22; http://dx.doi.org/10.1093/nar/gkt533.
  • Hu Y, Flockhart I, Vinayagam A, Bergwitz C, Berger B, Perrimon N, Mohr SE. An integrative approach to ortholog prediction for disease-focused and other functional studies. BMC Bioinformatics 2011; 12:357; http://dx.doi.org/10.1186/1471-2105-12-357.
  • Peretti D, Dahan N, Shimoni E, Hirschberg K, Lev S. Coordinated lipid transfer between the endoplasmic reticulum and the Golgi complex requires the VAP proteins and is essential for Golgi-mediated transport. Mol Biol Cell 2008; 19:3871-84; PMID:18614794; http://dx.doi.org/10.1091/mbc.E08-05-0498.
  • Welte MA. Expanding roles for lipid droplets. Curr Biol CB 2015; 25:R470-81; http://dx.doi.org/10.1016/j.cub.2015.04.004.
  • Cermelli S, Guo Y, Gross SP, Welte MA. The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr Biol CB 2006; 16:1783-95; http://dx.doi.org/10.1016/j.cub.2006.07.062.
  • Han SM, El Oussini H, Scekic-Zahirovic J, Vibbert J, Cottee P, Prasain JK, Bellen HJ, Dupuis L, Miller MA. VAPB/ALS8 MSP ligands regulate striated muscle energy metabolism critical for adult survival in caenorhabditis elegans. PLoS Genet 2013; 9:e1003738; PMID:24039594; http://dx.doi.org/10.1371/journal.pgen.1003738.
  • Harvey KF, Hariharan IK. The hippo pathway. Cold Spring Harb Perspect Biol 2012; 4:a011288; PMID:22745287; http://dx.doi.org/10.1101/cshperspect.a011288.
  • Pantalacci S, Tapon N, Léopold P. The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat Cell Biol 2003; 5:921-7; PMID:14502295; http://dx.doi.org/10.1038/ncb1051.
  • Lee JK, Shin JH, Hwang SG, Gwag BJ, McKee AC, Lee J, Kowall NW, Ryu H, Lim D-S, Choi E-J. MST1 functions as a key modulator of neurodegeneration in a mouse model of ALS. Proc Natl Acad Sci U S A 2013; 110:12066-71; http://dx.doi.org/10.1073/pnas.1300894110.
  • Kwon Y, Vinayagam A, Sun X, Dephoure N, Gygi SP, Hong P, Perrimon N. The Hippo signaling pathway interactome. Science 2013; 342:737-40; http://dx.doi.org/10.1126/science.1243971.
  • Anand R, Maksimoska J, Pagano N, Wong EY, Gimotty PA, Diamond SL, Meggers E, Marmorstein R. Toward the development of a potent and selective organoruthenium mammalian sterile 20 kinase inhibitor. J Med Chem 2009; 52:1602-11; PMID:19226137; http://dx.doi.org/10.1021/jm8005806.
  • Pandey UB, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 2011; 63:411-36; http://dx.doi.org/10.1124/pr.110.003293.
  • Freibaum BD, Lu Y, Lopez-Gonzalez R, Kim NC, Almeida S, Lee K-H, Badders N, Valentine M, Miller BL, Wong PC, et al. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 2015; 525(7567):129-33; PMID:26308899.
  • Zhang K, Donnelly CJ, Haeusler AR, Grima JC, Machamer JB, Steinwald P, Daley EL, Miller SJ, Cunningham KM, Vidensky S, et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 2015; 525(7567):56-61; PMID:26308891.
  • McGary KL, Park TJ, Woods JO, Cha HJ, Wallingford JB, Marcotte EM. Systematic discovery of nonobvious human disease models through orthologous phenotypes. Proc Natl Acad Sci U S A 2010; 107:6544-9; http://dx.doi.org/10.1073/pnas.0910200107.