1,342
Views
14
CrossRef citations to date
0
Altmetric
Extra View

Control of non-apoptotic nurse cell death by engulfment genes in Drosophila

, , &

References

  • Kerr JFR, Wyllie AH, Currie AR. Apoptosis, a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26:239-57; PMID:4561027; http://dx.doi.org/10.1038/bjc.1972.33
  • Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1ß-converting enzyme. Cell 1993; 75:641-52; PMID:8242740; http://dx.doi.org/10.1016/0092-8674(93)90485-9
  • Hengartner MO, Horvitz HR. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 1994; 76:665-76; PMID:7907274; http://dx.doi.org/10.1016/0092-8674(94)90506-1
  • Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997; 90:405-13; PMID:9267021; http://dx.doi.org/10.1016/S0092-8674(00)80501-2
  • Galluzzi L, Lopez-Soto A, Kumar S, Kroemer G. Caspases connect cell-death signaling to organismal homeostasis. Immunity 2016; 44:221-31; PMID:26885855; http://dx.doi.org/10.1016/j.immuni.2016.01.020
  • Tait SW, Ichim G, Green DR. Die another way–non-apoptotic mechanisms of cell death. J Cell Sci 2014; 127:2135-44; PMID:24833670; http://dx.doi.org/10.1242/jcs.093575
  • Ofengeim D, Ito Y, Najafov A, Zhang Y, Shan B, DeWitt JP, Ye J, Zhang X, Chang A, Vakifahmetoglu-Norberg H, et al. Activation of necroptosis in multiple sclerosis. Cell Rep 2015; 10:1836-49; PMID:25801023; http://dx.doi.org/10.1016/j.celrep.2015.02.051
  • Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M, et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 2015; 22:58-73; PMID:25236395; http://dx.doi.org/10.1038/cdd.2014.137
  • Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 2012; 19:107-20; PMID:21760595; http://dx.doi.org/10.1038/cdd.2011.96
  • Eroglu M, Derry WB. Your neighbours matter - non-autonomous control of apoptosis in development and disease. Cell Death Differ 2016; 23:1110-8; PMID:27177021; http://dx.doi.org/10.1038/cdd.2016.41
  • Peters PJ, Borst J, Oorschot V, Fukuda M, Krahenbuhl O, Tschopp J, Slot JW, Geuze HJ. Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J Exp Med 1991; 173:1099-109; PMID:2022921; http://dx.doi.org/10.1084/jem.173.5.1099
  • Krishna S, Overholtzer M. Mechanisms and consequences of entosis. Cell Mol Life Sci 2016; 73(11-12):2379-86; PMID:27048820
  • Brown GC, Neher JJ. Eaten alive! Cell death by primary phagocytosis: ‘phagoptosis’. Trends Biochem Sci 2012; 37:325-32; PMID:22682109; http://dx.doi.org/10.1016/j.tibs.2012.05.002
  • Hoeppner DJ, Hengartner MO, Schnabel R. Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans. Nature 2001; 412:202-6; PMID:11449279; http://dx.doi.org/10.1038/35084103
  • Reddien PW, Cameron S, Horvitz HR. Phagocytosis promotes programmed cell death in C. elegans. Nature 2001; 412:198-202; PMID:11449278; http://dx.doi.org/10.1038/35084096
  • Chakraborty S, Lambie EJ, Bindu S, Mikeladze-Dvali T, Conradt B. Engulfment pathways promote programmed cell death by enhancing the unequal segregation of apoptotic potential. Nat Commun 2015; 6:10126; PMID:26657541; http://dx.doi.org/10.1038/ncomms10126
  • Johnsen HL, Horvitz HR. Both the apoptotic suicide pathway and phagocytosis are required for a programmed cell death in Caenorhabditis elegans. BMC Biol 2016; 14:39; PMID:27185172; http://dx.doi.org/10.1186/s12915-016-0262-5
  • Hornik TC, Vilalta A, Brown GC. Activated microglia cause reversible apoptosis of pheochromocytoma cells, inducing their cell death by phagocytosis. J Cell Sci 2016; 129:65-79; PMID:26567213; http://dx.doi.org/10.1242/jcs.174631
  • Peterson JS, Timmons AK, Mondragon AA, McCall K. The end of the beginning: cell death in the germline. Curr Top Dev Biol 2015; 114:93-119; PMID:26431565; http://dx.doi.org/10.1016/bs.ctdb.2015.07.025
  • Mazzalupo S, Cooley L. Illuminating the role of caspases during Drosophila oogenesis. Cell Death Differ 2006; 13:1950-9; PMID:16528381; http://dx.doi.org/10.1038/sj.cdd.4401892
  • Baum JS, Arama E, Steller H, McCall K. The Drosophila caspases Strica and Dronc function redundantly in programmed cell death during oogenesis. Cell Death Differ 2007; 14:1508-17; PMID:17464325; http://dx.doi.org/10.1038/sj.cdd.4402155
  • Peterson JS, Barkett M, McCall K. Stage-specific regulation of caspase activity in Drosophila oogenesis. Dev Biol 2003; 260:113-23; PMID:12885559; http://dx.doi.org/10.1016/S0012-1606(03)00240-9
  • Foley K, Cooley L. Apoptosis in late stage Drosophila nurse cells does not require genes within the H99 deficiency. Development 1998; 125:1075-82; PMID:9463354
  • Bass BP, Tanner EA, Mateos San Martin D, Blute T, Kinser RD, Dolph PJ, McCall K. Cell-autonomous requirement for DNaseII in nonapoptotic cell death. Cell Death Differ 2009; 16:1362-71; PMID:19557011; http://dx.doi.org/10.1038/cdd.2009.79
  • Nezis IP, Shravage BV, Sagona AP, Lamark T, Bjorkoy G, Johansen T, Rusten TE, Brech A, Baehrecke EH, Stenmark H. Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis. J Cell Biol 2010; 190:523-31; http://dx.doi.org/10.1083/jcb.201002035
  • Peterson JS, McCall K. Combined inhibition of autophagy and caspases fails to prevent developmental nurse cell death in the Drosophila melanogaster ovary. PLoS One 2013; 8:e76046; PMID:24098761; http://dx.doi.org/10.1371/journal.pone.0076046
  • Timmons AK, Mondragon AA, Schenkel CE, Yalonetskaya A, Taylor JD, Moynihan KE, Etchegaray JI, Meehan TL, McCall K. Phagocytosis genes nonautonomously promote developmental cell death in the Drosophila ovary. Proc Natl Acad Sci U S A 2016; 113:E1246-55; PMID:26884181; http://dx.doi.org/10.1073/pnas.1522830113
  • Cuttell L, Vaughan A, Silva E, Escaron CJ, Lavine M, Van Goethem E, Eid JP, Quirin M, Franc NC. Undertaker, a Drosophila Junctophilin, links Draper-mediated phagocytosis and calcium homeostasis. Cell 2008; 135:524-34; PMID:18984163; http://dx.doi.org/10.1016/j.cell.2008.08.033
  • Freeman MR, Delrow J, Kim J, Johnson E, Doe CQ. Unwrapping glial biology: Gcm target genes regulating glial development, diversification, and function. Neuron 2003; 38:567-80; PMID:12765609; http://dx.doi.org/10.1016/S0896-6273(03)00289-7
  • Manaka J, Kuraishi T, Shiratsuchi A, Nakai Y, Higashida H, Henson P, Nakanishi Y. Draper-mediated and phosphatidylserine-independent phagocytosis of apoptotic cells by Drosophila hemocytes/macrophages. J Biol Chem 2004; 279:48466-76; PMID:15342648; http://dx.doi.org/10.1074/jbc.M408597200
  • Han C, Song Y, Xiao H, Wang D, Franc NC, Jan LY, Jan YN. Epidermal cells are the primary phagocytes in the fragmentation and clearance of degenerating dendrites in Drosophila. Neuron 2014; 81:544-60; PMID:24412417; http://dx.doi.org/10.1016/j.neuron.2013.11.021
  • Etchegaray JI, Timmons AK, Klein AP, Pritchett TL, Welch E, Meehan TL, Li C, McCall K. Draper acts through the JNK pathway to control synchronous engulfment of dying germline cells by follicular epithelial cells. Development 2012; 139:4029-39; PMID:22992958; http://dx.doi.org/10.1242/dev.082776
  • Reddien PW, Horvitz HR. The engulfment process of programmed cell death in Caenorhabditis elegans. Annu Rev Cell Dev Biol 2004; 20:193-221; PMID:15473839; http://dx.doi.org/10.1146/annurev.cellbio.20.022003.114619
  • Cooley L, Verheyen E, Ayers K. chickadee encodes a profilin required for intercellular cytoplasm transport during Drosophila oogenesis. Cell 1992; 69:173-84; PMID:1339308; http://dx.doi.org/10.1016/0092-8674(92)90128-Y
  • McCall K, Steller H. Requirement for DCP-1 caspase during Drosophila oogenesis. Science 1998; 279:230-4; PMID:9422696; http://dx.doi.org/10.1126/science.279.5348.230
  • Cavaliere V, Taddei C, Gargiulo G. Apoptosis of nurse cells at the late stages of oogenesis. Dev Genes Evol 1998; 208:106-12; PMID:9569352; http://dx.doi.org/10.1007/s004270050160
  • Meehan TL, Kleinsorge SE, Timmons AK, Taylor JD, McCall K. Polarization of the epithelial layer and apical localization of integrins are required for engulfment of apoptotic cells in the Drosophila ovary. Dis Model Mech 2015; 8:1603-14; PMID:26398951; http://dx.doi.org/10.1242/dmm.021998
  • Meehan TL. Analysis of engulfment and cell corpse processing by epithelial cells in the Drosophila ovary. Ph.D. Dissertation. Boston University, 2016
  • Hsieh HH, Hsu TY, Jiang HS, Wu YC. Integrin α PAT-2/CDC-42 signaling is required for muscle-mediated clearance of apoptotic cells in Caenorhabditis elegans. PLoS Genet 2012; 8:e1002663; PMID:22615577; http://dx.doi.org/10.1371/journal.pgen.1002663
  • Meehan TL, Joudi TF, Timmons AK, Taylor JD, Habib C, Peterson JS, Emmanuel S, Franc NC, McCall K. Components of the engulfment machinery have distinct roles in corpse processing. PLoS One 2016; 11:e0158217; PMID:27347682; http://dx.doi.org/10.1371/journal.pone.0158217
  • Vaananen HK, Karhukorpi EK, Sundquist K, Wallmark B, Roininen I, Hentunen T, Tuukkanen J, Lakkakorpi P. Evidence for the presence of a proton pump of the vacuolar H(+)-ATPase type in the ruffled borders of osteoclasts. J Cell Biol 1990; 111:1305-11; PMID:2144003; http://dx.doi.org/10.1083/jcb.111.3.1305
  • Wada A, Kato K, Uwo MF, Yonemura S, Hayashi S. Specialized extraembryonic cells connect embryonic and extraembryonic epidermis in response to Dpp during dorsal closure in Drosophila. Dev Biol 2007; 301:340-9; PMID:17034783; http://dx.doi.org/10.1016/j.ydbio.2006.09.020
  • Goentoro LA, Yakoby N, Goodhouse J, Schupbach T, Shvartsman SY. Quantitative analysis of the GAL4/UAS system in Drosophila oogenesis. Genesis 2006; 44:66-74; PMID:16425298; http://dx.doi.org/10.1002/gene.20184

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.