738
Views
3
CrossRef citations to date
0
Altmetric
Methods and Technical Advances

PseudoBase: a genomic visualization and exploration resource for the Drosophila pseudoobscura subgroup

, , & ORCID Icon
Pages 38-44 | Received 15 Sep 2020, Accepted 10 Dec 2020, Published online: 11 Jan 2021

References

  • Sturtevant AH, Dobzhansky T. Inversions in the third chromosome of wild races of Drosophila pseudoobscura, and their use in the study of the history of the species. Proc Nat Acad Sci. 1936;22:448–450.
  • Dobzhansky T. Genetics of natural populations IX. Temporal changes in the composition of populations of Drosophila pseudoobscura. Genetics. 1943;28(2):162–186.
  • Dobzhansky T, Sturtevant AH. Inversions in the chromosomes of Drosophila pseudoobscura. Genetics. 1938;23(1):28–64.
  • Lewontin R, Hubby J. A molecular approach to the study of genic heterozygosity in natural populations II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudobscura. Genetics. 1966;54(2):565–609.
  • Fuller ZL, Koury SA, Phadnis N, et al. How chromosomal rearrangements shape adaptation and speciation: case studies in Drosophila pseudoobscura and its sibling species Drosophila persimilis. Mol Ecol. 2018;28(6):1283–1301.
  • Fishman L, Stathos A, Beardsley PM, et al. Chromosomal rearrangements and the genetics of reproductive barriers in Mimulus (monkey flowers). Evolution. 2013;67(9):2547–2560.
  • Hoffmann AA, Rieseberg LH. Revisiting the impact of inversions in evolution: from population genetic markers to drivers of adaptive shifts and speciation? Annu Rev Ecol Evol Syst. 2008;39:21–42.
  • Kirkpatrick M, Barrett B. Chromosome inversions, adaptive cassettes and the evolution of species’ ranges. Mol Ecol. 2015;24(9):2046–2055.
  • Kirkpatrick M, Barton N. Chromosome inversions, local adaptation and speciation. Genetics. 2006;173(1):419–434.
  • Noor MA, Grams KL, Bertucci LA, et al. Chromosomal inversions and the reproductive isolation of species. Proc Nat Acad Sci. 2001;98(21):12084–12088.
  • Noor MAF, Grams KL, Bertucci LA, et al. The genetics of reproductive isolation and the potential for gene exchange between Drosophila pseudoobscura and D. persimilis via backcross hybrid males. Evolution. 2001;55:512–521.
  • Brown KM, Burk LM, Henagan LM, et al. A test of the chromosomal rearrangement model of speciation in Drosophila pseudoobscura. Evolution. 2004;58(8):1856–1860.
  • Chang AS, Noor MAF. The genetics of hybrid male sterility between the allopatric species pair Drosophila persimilis and D. pseudoobscura bogotana: dominant sterility alleles in collinear autosomal regions. Genetics. 2007;176(1):343–349.
  • Kulathinal RJ, Stevison LS, Noor MAF. The genomics of speciation in Drosophila: diversity, divergence, and introgression estimated using low-coverage genome sequencing. PLoS Genet. 2009;5(7):e1000550.
  • Phadnis N, Orr H. A single gene causes both male sterility and segregation distortion in Drosophila hybrids. Science. 2009;323(5912):376–379.
  • Beckenbach AT, Wei YW, Liu H. Relationships in the Drosophila obscura species group, inferred from mitochondrial cytochrome oxidase II sequences. Mol Biol Evol. 1993;10(3):619–634.
  • Korunes KL, Machado CA, Noor MA. Inversions shape the divergence of Drosophila pseudoobscura and D. persimilis on multiple timescales. BioRxiv. 2019;842047. DOI:https://doi.org/10.1101/842047
  • Manzano-Winkler B, McGaugh SE, Noor MAF. How hot are Drosophila hotspots? Examining recombination rate variation and associations with nucleotide diversity, divergence, and maternal age in Drosophila pseudoobscura. PLoS ONE. 2013;8(8):e71582.
  • McGaugh SE, Heil CSS, Manzano-Winkler B, et al. Recombination modulates how selection affects linked sites in Drosophila. PLoS Biol. 2012;10(11):e1001422.
  • Smukowski Heil CS, Ellison C, Dubin M, et al. Recombining without hotspots: A comprehensive evolutionary portrait of recombination in two closely related species of Drosophila. Genome Biol Evol. 2015;7(10):2829–2842.
  • Bachtrog D, Charlesworth B. Reduced adaptation of a non-recombining neo-Y chromosome. Nature. 2002;416(6878):323–326.
  • Mahajan S, Wei KH, Nalley M, et al. De novo assembly of a young Drosophila Y chromosome using single-molecule sequencing and chromatin conformation capture. PLoS Biol. 2018;16(7):e2006348.
  • Fuller ZL, Leonard CJ, Young RE, et al. Ancestral polymorphisms explain the role of chromosomal inversions in speciation. PLoS Genet. 2018;14(7):e1007526.
  • McGaugh SE, Noor MAF. Genomic impacts of chromosomal inversions in parapatric Drosophila species. Philos Trans R Soc B. 2012;367(1587):422–429.
  • Samuk K, Manzano-Winkler B, Ritz KR, et al. Natural selection shapes variation in genome-wide recombination rate in Drosophila pseudoobscura. Curr Biol. 2020;30(8):1517–1528.E6.
  • Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics. 2009;25(14):1754–1760.
  • Thurmond J, Goodman JL, Strelets VB, et al. FlyBase 2.0: the next generation. Nucleic Acids Res. 2019;47(D1):D759–D765.
  • McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–1303.
  • Van der Auwera GA, Carneiro MO, Hartl C, et al. From FastQ data to high-confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43(1):11.10.1–11.10.33.
  • Buels R, Yao E, Diesh CM, et al. JBrowse: A dynamic web platform for genome visualization and analysis. Genome Biol. 2016;17(66). DOI:https://doi.org/10.1186/s13059-016-0924-1
  • Kriventseva EV, Tegenfeldt F, Petty TJ, et al. OrthoDB v8: update of the hierarchical catalog of orthologs and the underlying free software. Nucleic Acids Res. 2015;43(Database issue):D250–6. Epub 2014 Nov 26. PMID: 25428351; PMCID: PMC4383991
  • Richards S, Liu Y, Bettencourt BR, et al. Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution. Genome Res. 2005;15(1):1–18.
  • Noor JKF, Noor MAF. Finding selection in all the right places: a college genetics laboratory inquiry-based learning exercise. Genet Soc Am Peer-Reviewed Educ Portal. 2013;2013:1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.