3,405
Views
1
CrossRef citations to date
0
Altmetric
Review

The chemosensory system of the Drosophila larva: an overview of current understanding

& ORCID Icon
Pages 1-12 | Received 11 May 2021, Accepted 02 Jul 2021, Published online: 06 Oct 2021

References

  • Sterling P, Laughlin S. Principles of Neural Design. The MIT Press; 2015. DOI:10.2307/j.ctt17kk982.
  • Bassett DS, Gazzaniga MS. Understanding complexity in the human brain. Trends Cogn Sci. 2011;15:200–209.
  • Dasari S, Cooper RL. Modulation of sensory–CNS–motor circuits by serotonin, octopamine, and dopamine in semi-intact Drosophila larva. Neurosci Res. 2004;48:221–227.
  • Gerber B, Stocker RF. The Drosophila larva as a model for studying chemosensation and chemosensory learning: a review. Chem Senses. 2007;32:65–89.
  • Homem CCF, Knoblich JA. Drosophila neuroblasts: a model for stem cell biology. Development. 2012;139:4297–4310.
  • Jeibmann A, Paulus W. Drosophila melanogaster as a Model Organism of Brain Diseases. Int J Mol Sci. 2009;10:407–440.
  • Ruiz‐Cañada C, Budnik V. Introduction on The Use of The Drosophila Embryonic/Larval Neuromuscular Junction as A Model System to Study Synapse Development and Function, and A Brief Summary of Pathfinding and Target Recognition. Int Rev Neurobiol. 2006;75:1–31.
  • Allocca M, Zola S, Bellosta P. The Fruit Fly, Drosophila melanogaster: the Making of a Model (Part I). Drosophila melanogaster. 2018;131–156. DOI:10.5772/intechopen.72832
  • Tolwinski NS. Introduction: drosophila—A Model System for Developmental Biology. J Dev Biol. 2017;5:9.
  • Larsson MC, Domingos AI, Jones WD, et al. Or83b Encodes a Broadly Expressed Odorant Receptor Essential for Drosophila Olfaction. Neuron. 2004;43(5):703–714. .
  • Butterwick JA, del Mármol J, Kim KH, et al. Cryo-EM structure of the insect olfactory receptor Orco. Nature. 2018;560:447–452.
  • Gaillard I, Rouquier S, Giorgi D. Olfactory receptors. CMLS Cell Mol. Life Sci. 2004;61: 456–469.
  • Abuin L, Bargeton B, Ulbrich MH, et al. Functional Architecture of Olfactory Ionotropic Glutamate Receptors. Neuron. 2011;69(1):44–60. .
  • Benton R, Vannice KS, Gomez-Diaz C, et al. Variant Ionotropic Glutamate Receptors as Chemosensory Receptors in Drosophila. Cell. 2009;136:149–162.
  • Rytz R, Croset V, Benton R. Ionotropic Receptors (IRs): chemosensory ionotropic glutamate receptors in Drosophila and beyond. Insect Biochem Mol Biol. 2013;43:888–897.
  • Clyne PJ, Warr CG, Carlson JR. Candidate Taste Receptors in Drosophila. Science. 2000;287:1830–1834.
  • Ni L, Bronk P, Chang EC, et al. A gustatory receptor paralog controls rapid warmth avoidance in Drosophila. Nature. 2013;500:580–584.
  • Scott K, Brady R, Cravchik A, et al. A Chemosensory Gene Family Encoding Candidate Gustatory and Olfactory Receptors in Drosophila. Cell. 2001;104(5):661–673. .
  • Shim J, et al. The full repertoire of Drosophila gustatory receptors for detecting an aversive compound. Nat Commun. 2015;6:8867.
  • Kim SH, Lee Y, Akitake B, et al. Drosophila TRPA1 channel mediates chemical avoidance in gustatory receptor neurons. PNAS. 2010;107(18):8440–8445. .
  • Kwon Y, Kim SH, Ronderos DS, et al. Drosophila TRPA1 Channel Is Required to Avoid the Naturally Occurring Insect Repellent Citronellal. Curr Biol. 2010;20(18):1672–1678. .
  • Liman ER, Zhang YV, Montell C. Peripheral Coding of Taste. Neuron. 2014;81:984–1000.
  • Xu J, Sornborger AT, Lee JK, et al. Drosophila TRPA channel modulates sugar-stimulated neural excitation, avoidance and social response. Nat Neurosci. 2008;11:676–682.
  • Alves G, Sallé J, Chaudy S, et al. High-NaCl Perception in Drosophila melanogaster. J Neurosci. 2014;34:10884–10891.
  • Liu L, et al. Contribution of Drosophila DEG/ENaC Genes to Salt Taste. Neuron. 2003;39:133–146.
  • Zelle KM, Lu B, Pyfrom SC, et al. The Genetic Architecture of Degenerin/Epithelial Sodium Channels in Drosophila. G3 (Bethesda). 2013;3:441–450.
  • Gomez-Diaz C, Martin F, Garcia-Fernandez JM, et al. The Two Main Olfactory Receptor Families in Drosophila, ORs and IRs: a Comparative Approach. Front Cell Neurosci. 2018;12.
  • Yao CA, Carlson JR. Role of G-Proteins in Odor-Sensing and CO2-Sensing Neurons in Drosophila. J Neurosci. 2010;30:4562–4572.
  • Murmu MS, Martin J-R. Interaction between cAMP and intracellular Ca2+-signaling pathways during odor-perception and adaptation in Drosophila. Biochim Biophys Acta, Mol Cell Res. 2016;1863:2156–2174.
  • Miazzi F, Hansson BS, Wicher D. Odor-induced cAMP production in Drosophila melanogaster olfactory sensory neurons. J Exp Biol. 2016;219:1798–1803.
  • Wicher D. Chapter Two - Olfactory Signaling in Insects. In: Glatz R, editor. Progress in Molecular Biology and Translational Science. Vol. 130. Academic Press; 2015. p. 37–54.
  • Corcoran JA, Sonntag Y, Andersson MN, et al. Endogenous insensitivity to the Orco agonist VUAA1 reveals novel olfactory receptor complex properties in the specialist fly Mayetiola destructor. Sci Rep. 2018;8:1–13.
  • Croset V, et al. Ancient Protostome Origin of Chemosensory Ionotropic Glutamate Receptors and the Evolution of Insect Taste and Olfaction. PLoS Genet. 2010;6:e1001064.
  • Benton R. Sensitivity and specificity in Drosophila pheromone perception. Trends Neurosci. 2007;30:512–519.
  • Halpern BP. Amiloride and vertebrate gustatory responses to NaCl. Neurosci Biobehav Rev. 1998;23:5–47.
  • Ng R, et al. Amplification of Drosophila Olfactory Responses by a DEG/ENaC Channel. Neuron. 2019;104:947–959.e5.
  • Hellmich UA, Gaudet R. Structural Biology of TRP Channels. Handb Exp Pharmacol. 2014;223:963–990.
  • Thorne N, Amrein H. Atypical expression of Drosophila gustatory receptor genes in sensory and central neurons. J Comp Neurol. 2008;506:548–568.
  • Zhang H-J, et al. Topological and Functional Characterization of an Insect Gustatory Receptor. PLOS ONE. 2011;6:e24111.
  • Badre NH, Martin ME, Cooper RL. The physiological and behavioral effects of carbon dioxide on Drosophila melanogaster larvae. Comp Biochem Physiol Part A. 2005;140:363–376.
  • Faucher C, Forstreuter M, Hilker M, et al. Behavioral responses of Drosophila to biogenic levels of carbon dioxide depend on life-stage, sex and olfactory context. J Exp Biol. 2006;209:2739–2748.
  • Kumar A, et al. Contributions of the Conserved Insect Carbon Dioxide Receptor Subunits to Odor Detection. Cell Rep. 2020;31:107510.
  • Robertson HM, Kent LB. Evolution of the Gene Lineage Encoding the Carbon Dioxide Receptor in Insects. 2009;9:1–14. Journal of Insect Science.
  • Mishra D, et al. The molecular basis of sugar sensing in Drosophila larvae. Curr Biol. 2013;23:1466–1471.
  • Stocker RF. Design of the Larval Chemosensory System. In: Technau GM, editor. Brain Development in Drosophila melanogaster. Springer; 2008. p. 69–81. DOI:10.1007/978-0-387-78261-4_5.
  • Gendre N, et al. Integration of complex larval chemosensory organs into the adult nervous system of Drosophila. Development. 2004;131:83–92.
  • Singh RN, Singh K. Fine structure of the sensory organs of Drosophila melanogaster Meigen larva (Diptera : drosophilidae). 1984;13:255–273. International Journal of Insect Morphology and Embryology.
  • Stocker RF. Design of the larval chemosensory system. Adv Exp Med Biol. 2008;628:69–81.
  • Stocker RF. The organization of the chemosensory system in Drosophila melanogaster: a rewiew. Cell Tissue Res. 1994;275:3–26.
  • Oppliger FY, Guerin M, Vlimant M. Neurophysiological and behavioural evidence for an olfactory function for the dorsal organ and a gustatory one for the terminal organ in Drosophila melanogaster larvae. J Insect Physiol. 2000;46:135–144.
  • Larsson MC, et al. Or83b Encodes a Broadly Expressed Odorant Receptor Essential for Drosophila Olfaction. Neuron. 2004;43:703–714.
  • Mathew D, et al. Functional diversity among sensory receptors in a Drosophila olfactory circuit. PNAS. 2013;110:E2134–E2143.
  • Mombaerts P, et al. Visualizing an olfactory sensory map. Cell. 1996;87:675–686.
  • Apostolopoulou AA, Rist A, Thum AS. Taste processing in Drosophila larvae. Front Integr Neurosci. 2015;9.
  • Sánchez-Alcañiz JA, et al. An expression atlas of variant ionotropic glutamate receptors identifies a molecular basis of carbonation sensing. Nat Commun. 2018;9(4252).
  • Laissue PP, et al. Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster. J Comp Neurol. 1999;405:543–552.
  • Python F, Stocker RF. Adult-like complexity of the larval antennal lobe of D. melanogaster despite markedly low numbers of odorant receptor neurons. J Comp Neurol. 2002;445:374–387.
  • Vogt K. Towards a functional connectome in Drosophila. J Neurogenet. 2020;34:156–161.
  • Ramaekers A, et al. Glomerular Maps without Cellular Redundancy at Successive Levels of the Drosophila Larval Olfactory Circuit. Curr Biol. 2005;15:982–992.
  • Guo S, Kim J. Molecular Evolution of Drosophila Odorant Receptor Genes. Mol Biol Evol. 2007;24:1198–1207.
  • Kreher SA, Kwon JY, Carlson JR. The Molecular Basis of Odor Coding in the Drosophila Larva. Neuron. 2005;46:445–456.
  • Si G, et al. Structured Odorant Response Patterns across a Complete Olfactory Receptor Neuron Population. Neuron. 2019;101:950–962.e7.
  • Wang F, Nemes A, Mendelsohn M, et al. Odorant Receptors Govern the Formation of a Precise Topographic Map. Cell. 1998;93:47–60.
  • Jefferis GSXE, Marin EC, Stocker RF, et al. Target neuron prespecification in the olfactory map of Drosophila. Nature. 2001;414:204–208.
  • Goldman AL, Naters W, Lessing D, et al. Coexpression of Two Functional Odor Receptors in One Neuron. Neuron. 2005;45:661–666.
  • Galindo K, Smith DP. A large family of divergent Drosophila odorant-binding proteins expressed in gustatory and olfactory sensilla. Genetics. 2001;159:1059–1072.
  • Larter NK, Sun JS, Carlson JR. Organization and function of Drosophila odorant binding proteins. eLife. 2016;5:e20242.
  • Sun JS, Xiao S, Carlson JR. The diverse small proteins called odorant-binding proteins. Open Biol. 2018;8:180208.
  • Fishilevich E, et al. Chemotaxis Behavior Mediated by Single Larval Olfactory Neurons in Drosophila. Curr Biol. 2005;15:2086–2096.
  • Berck ME, et al. The wiring diagram of a glomerular olfactory system. eLife. 2016;5:e14859.
  • Liang L, et al. GABAergic Projection Neurons Route Selective Olfactory Inputs to Specific Higher-Order Neurons. Neuron. 2013;79:917–931.
  • Vogt K, et al. Internal state configures olfactory behavior and early sensory processing in Drosophila larvae. Sci Adv. 2021;7:eabd6900.
  • Bates AS, et al. Complete Connectomic Reconstruction of Olfactory Projection Neurons in the Fly Brain. Curr Biol. 2020;30:3183–3199.e6.
  • Otto N, et al. Input Connectivity Reveals Additional Heterogeneity of Dopaminergic Reinforcement in Drosophila. Curr Biol. 2020;30:3200–3211.e8.
  • Asahina K, Louis M, Piccinotti S, et al. A circuit supporting concentration-invariant odor perception in Drosophila. J Biol. 2009;8(9).
  • Hernandez-Nunez L, et al. Reverse-correlation analysis of navigation dynamics in Drosophila larva using optogenetics. eLife. 2015;4:e06225.
  • Schulze A, et al. Dynamical feature extraction at the sensory periphery guides chemotaxis. eLife. 2015;4:e06694.
  • Twick I, Lee JA, Ramaswami M. Chapter 1 - Olfactory Habituation in Drosophila—Odor Encoding and its Plasticity in the Antennal Lobe. In: Barkai E, Wilson DA, editors. Progress in Brain Research. Vol. 208. Elsevier; 2014. p. 3–38.
  • Das S, et al. Plasticity of local GABAergic interneurons drives olfactory habituation. PNAS. 2011;108:E646–E654.
  • Larkin A, et al. Central synaptic mechanisms underlie short-term olfactory habituation in Drosophila larvae. Learn Mem. 2010;17:645–653.
  • Liu WW, Wilson RI. Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system. PNAS. 2013;110:10294–10299.
  • Thum AS, Gerber B. Connectomics and function of a memory network: the mushroom body of larval Drosophila. Curr Opin Neurobiol. 2019;54:146–154.
  • Honda T, Lee C-Y, Yoshida-Kasikawa M, et al. Induction of Associative Olfactory Memory by Targeted Activation of Single Olfactory Neurons in Drosophila Larvae. Sci Rep. 2014;4:4798.
  • Honjo K, Furukubo-Tokunaga K. Distinctive Neuronal Networks and Biochemical Pathways for Appetitive and Aversive Memory in Drosophila Larvae. J Neurosci. 2009;29:852–862.
  • Widmann A, Eichler K, Selcho M, et al. Odor-taste learning in Drosophila larvae. J Insect Physiol. 2018;106:47–54.
  • Eichler K, et al. The complete connectome of a learning and memory centre in an insect brain. Nature. 2017;548:175–182.
  • Mao Z, Davis RL. Eight Different Types of Dopaminergic Neurons Innervate the Drosophila Mushroom Body Neuropil: anatomical and Physiological Heterogeneity. Front Neural Circuits. 2009;3.
  • Kim Y-C, Lee H-G, Lim J, et al. Appetitive Learning Requires the Alpha1-Like Octopamine Receptor OAMB in the Drosophila Mushroom Body Neurons. J Neurosci. 2013;33:1672–1677.
  • Kendroud S, et al. Structure and development of the subesophageal zone of the Drosophila brain. II. Sensory compartments. J Comp Neurol. 2018;526:33–58.
  • Miroschnikow A, Schlegel P, Pankratz MJ. Making Feeding Decisions in the Drosophila Nervous System. Curr Biol. 2020;30:R831–R840.
  • Prieto-Godino LL, et al. Functional integration of ‘undead’ neurons in the olfactory system. Sci Adv. 2020;6:eaaz7238.
  • Prieto-Godino LL, Diegelmann S, Bate M. Embryonic origin of olfactory circuitry in Drosophila: contact and activity-mediated interactions pattern connectivity in the antennal lobe. PLoS Biol. 2012;10:e1001400.
  • Brunet Avalos C, Maier GL, Bruggmann R, et al. Single cell transcriptome atlas of the Drosophila larval brain. Elife. 2019;8.
  • Prieto-Godino LL, et al. Evolution of Acid-Sensing Olfactory Circuits in Drosophilids. Neuron. 2017;93:661–676.e6.
  • Auer TO, Khallaf MA, Silbering AF, et al. The making of an olfactory specialist. BioRxiv. 2019;546507.
  • Auer TO, et al. Olfactory receptor and circuit evolution promote host specialization. Nature. 2020;579:402–408.
  • Khallaf MA, et al. Mate discrimination among subspecies through a conserved olfactory pathway. bioRxiv. 2019;854364.
  • Prieto-Godino LL, et al. Olfactory receptor pseudo-pseudogenes. Nature. 2016;539:93–97.
  • Chen Z, Liu F, Liu N. Human Odour Coding in the Yellow Fever Mosquito, Aedes aegypti. Sci Rep. 2019;9:13336.
  • Liu C, Pitts RJ, Bohbot JD, et al. Distinct Olfactory Signaling Mechanisms in the Malaria Vector Mosquito Anopheles gambiae. PLoS Biol. 2010;8(8):e1000467. .
  • Liu H, Liu T, Xie L, et al. Functional analysis of Orco and odorant receptors in odor recognition in Aedes albopictus. Parasites Vectors. 2016;9(1):363. .
  • McBride CS, Baier F, Omondi AB, et al. Evolution of mosquito preference for humans linked to an odorant receptor. Nature. 2014;515(7526):222–227. .
  • Wang B, Liu Y, He K, et al. Comparison of research methods for functional characterization of insect olfactory receptors. Sci Rep. 2016;6:32806.
  • van Giesen L, Hernandez-Nunez L, Delasoie-Baranek S, et al. Multimodal stimulus coding by a gustatory sensory neuron in Drosophila larvae. Nat Commun. 2016;7(1):10687. .
  • Miroschnikow A, Schlegel P, Schoofs A, et al. Convergence of monosynaptic and polysynaptic sensory paths onto common motor outputs in a Drosophila feeding connectome. eLife. 2018;7. DOI:10.7554/eLife.40247.
  • Rist A, Thum AS. A map of sensilla and neurons in the taste system of drosophila larvae. J Comp Neurol. 2017;525:3865–3889.
  • Stewart S, Koh T-W, Ghosh AC, et al. Candidate ionotropic taste receptors in the Drosophila larva. PNAS. 2015;112:4195–4201.
  • Kwon JY, Dahanukar A, Weiss LA, et al. Molecular and Cellular Organization of the Taste System in the Drosophila Larva. J Neurosci. 2011;31:15300–15309.
  • Vosshall LB, Stocker RF. Molecular Architecture of Smell and Taste in. Drosophila Annu Rev Neurosci. 2007;30: 505–533.
  • Apostolopoulou AA, Mazija L, Wüst A, et al. The neuronal and molecular basis of quinine-dependent bitter taste signaling in Drosophila larvae. Front Behav Neurosci. 2014;8. DOI:10.3389/fnbeh.2014.00006
  • Choi J, Yu S, Choi MS, et al. Cellular Basis of Bitter-Driven Aversive Behaviors in Drosophila Larva. eNeuro. 2020;7:ENEURO.0510–19.2020.
  • Croset V, Schleyer M, Arguello JR, et al. A molecular and neuronal basis for amino acid sensing in the Drosophila larva. Sci Rep. 2016;6(34871). DOI:10.1038/srep34871
  • Delventhal R, Carlson JR. Bitter taste receptors confer diverse functions to neurons. eLife. 2016;5:e11181.
  • Freeman EG, Dahanukar A. Molecular neurobiology of Drosophila taste. Curr Opin Neurobiol. 2015;34:140–148.
  • Kim H, Choi MS, Kang K, et al. Behavioral Analysis of Bitter Taste Perception in Drosophila Larvae. Chem Senses. 2016;41:85–94.
  • Miyamoto T, Amrein H. Diverse roles for the Drosophila fructose sensor Gr43a. Fly (Austin). 2014;8:19–25.
  • Rohwedder A, Wenz N, Stehle B, et al. Four Individually Identified Paired Dopamine Neurons Signal Reward in Larval Drosophila. Curr Biol. 2016;26(5):661–669. .
  • Kwon JY, Dahanukar A, Weiss LA, et al. The molecular basis of CO2 reception in Drosophila. PNAS. 2007;104:3574–3578.
  • Schlegel P, Texada MJ, Miroschnikow A, et al. Synaptic transmission parallels neuromodulation in a central food-intake circuit. eLife. 2016;5:e16799.
  • Kirkhart C, Scott K. Gustatory Learning and Processing in the Drosophila Mushroom Bodies. J Neurosci. 2015;35:5950–5958.
  • Widmer YF, Fritsch C, Jungo MM, et al. Multiple neurons encode CrebB dependent appetitive long-term memory in the mushroom body circuit. eLife. 2018;7:e39196.
  • Scott K. Gustatory Processing in Drosophila melanogaster. Annu Rev Entomol. 2018;63:15–30.
  • Eichler K, et al. The complete connectome of a learning and memory center in an insect brain. bioRxiv. 2017;141762. DOI:10.1101/141762.
  • Berck ME, Khandelwal A, Claus L, et al. The wiring diagram of a glomerular olfactory system. eLife. 2016;5:e14859.
  • Schoofs A, Hückesfeld S, Schlegel P, et al. Selection of Motor Programs for Suppressing Food Intake and Inducing Locomotion in the Drosophila Brain. PLoS Biol. 2014;12(6):e1001893. .
  • Hückesfeld S, Schoofs A, Schlegel P, et al. Localization of Motor Neurons and Central Pattern Generators for Motor Patterns Underlying Feeding Behavior in Drosophila Larvae. PLOS ONE. 2015;10:e0135011.
  • Hückesfeld S, Peters M, Pankratz MJ. Central relay of bitter taste to the protocerebrum by peptidergic interneurons in the Drosophila brain. Nat Commun. 2016;7:12796.
  • Valdes-Aleman J, Fetter RD, Sales EC, et al. Comparative Connectomics Reveals How Partner Identity, Location, and Activity Specify Synaptic Connectivity in Drosophila. Neuron. 2021;109(1):105–122.e7.
  • Jeong YT, Shim J, Oh S, et al. An Odorant-Binding Protein Required for Suppression of Sweet Taste by Bitter Chemicals. Neuron. 2013;79(4):725–737. .
  • Park S-K, et al. Expression patterns of two putative odorant-binding proteins in the olfactory organs of Drosophila melanogaster have different implications for their functions. Cell Tissue Res. 2000;300:181–192.
  • Shimaji K, Tanaka R, Maeda T, et al. Histone methyltransferase G9a is a key regulator of the starvation-induced behaviors in Drosophila melanogaster. Sci Rep. 2017;7(1):14763. .