2,586
Views
3
CrossRef citations to date
0
Altmetric
Review

Dynamic movement and turnover of extracellular matrices during tissue development and maintenance

ORCID Icon
Pages 248-274 | Received 31 Jan 2022, Accepted 05 May 2022, Published online: 20 Jul 2022

References

  • Walker F. The origin, turnover and removal of glomerular basement-membrane. J Pathol. 1973;110(3):233–244.
  • Price RG, Spiro RG. Studies on the metabolism of the renal glomerular basement membrane. Turnover measurements in the rat with the use of radio labeled amino acids. J Biol Chem. 1977;252(23):8597–8602.
  • Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: A dynamic view. Dev Biol. 2010;341(1):126–140.
  • Dong B, Hayashi S. Shaping of biological tubes by mechanical interaction of cell and extracellular matrix. Curr Opin Genet Dev. 2015;32:129–134.
  • Zhu KY, Merzendorfer H, Zhang W, et al. Biosynthesis, turnover, and functions of chitin in insects. Annu Rev Entomol. 2016;61:177–196.
  • Corfield AP. Mucins: A biologically relevant glycan barrier in mucosal protection. Biochim Biophys Acta - Gen Subj. 2015;1850(1):236–252.
  • Ridley C, Thornton DJ. Mucins: The frontline defence of the lung. Biochem Soc Trans. 2018; 46(5):1099–1106.
  • Cohen JD, Sundaram MV. C. elegans apical extracellular matrices shape epithelia. J Dev Biol. 2020; 8(4):23.
  • Hynes RO. The evolution of metazoan extracellular matrix. J Cell Biol. 2012 ;196(6):671–679.
  • Fidler AL, Darris CE, Chetyrkin S V, et al. Collagen IV and basement membrane at the evolutionary dawn of metazoan tissues. Elife. 2017 ;6:e24176.
  • Yurchenco PD. Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb Perspect Biol. 2011;3 (2):a004911.
  • Watt FM, Fujiwara H. Cell-extracellular matrix interactions in normal and diseased skin. Cold Spring Harb Perspect Biol. 2011;3(4): a005124.
  • Jayadev R, Sherwood DR. Basement membranes. Curr Biol. 2017;27(6):R207–R211.
  • Díaz-Torres A, Rosales-Nieves AE, Pearson JR, et al. Stem cell niche organization in the Drosophila ovary requires the ECM component Perlecan. Curr Biol. 2021;31(8):1744–1753.e5.
  • Tsutsui K, Machida H, Nakagawa A, et al. Mapping the molecular and structural specialization of the skin basement membrane for inter-tissue interactions. Nat Commun. 2021;12(1):2577.
  • Bonche R, Chessel A, Boisivon S, et al. Two different sources of Perlecan cooperate for its function in the basement membrane of the Drosophila wing imaginal disc. Dev Dyn. 2021;250(4):542–561.
  • Keeley DP, Hastie E, Jayadev R, et al. Comprehensive endogenous tagging of basement membrane components reveals dynamic movement within the matrix scaffolding. Dev Cell. 2020;54(1):60–74.e7.
  • Iozzo R V., Gubbiotti MA. Extracellular matrix: The driving force of mammalian diseases. Matrix Biol. 2018;71–72:1–9.
  • Uitto J, Has C, Vahidnezhad H, et al. Molecular pathology of the basement membrane zone in heritable blistering diseases. Matrix Biol. 2017;57–58:76–85.
  • Van Agtmael T, Bruckner-Tuderman L. Basement membranes and human disease. Cell Tissue Res. 2010;339(1):167–188.
  • Suh JH, Miner JH. The glomerular basement membrane as a barrier to albumin. Nat Rev Nephro l. 2013;9(8):470–477.
  • Matsubayashi Y, Louani A, Dragu A, et al. A Moving source of matrix components is essential for de novo basement membrane formation. Curr Biol. 2017;27(22):3526–3534.e4.
  • Van De Bor V, Zimniak G, Papone L, et al. Companion blood cells control ovarian stem cell niche microenvironment and homeostasis. Cell Rep. 2015;13(3):546–560.
  • Haigo SL, Bilder D. Global tissue revolutions in a morphogenetic movement controlling elongation . Science. 2011 ;331(6020):1071–1074.
  • Cetera M, Ramirez-San Juan GR, Oakes PW, et al. Epithelial rotation promotes the global alignment of contractile actin bundles during Drosophila egg chamber elongation. Nat Commun. 2014;5(1):5511.
  • Campos FC, Dennis C, Alégot H, et al. Oriented basement membrane fibrils provide a memory for F-actin planar polarization via the Dystrophin-Dystroglycan complex during tissue elongation. Dev. 2020;147(7):dev186957.
  • Pastor-Pareja JC, Xu T. Shaping cells and organs in Drosophila by opposing roles of fat body-secreted Collagen IV and Perlecan. Dev Cell. 2011;21(2):245–256.
  • Kadler KE. Fell Muir lecture: collagen fibril formation in vitro and in vivo. Int J Exp Pathol. 2017;98(1):4–16.
  • Lynch MD, Watt FM. Fibroblast heterogeneity: implications for human disease. J Clin Invest. 2018;128(1):26–35.
  • Afik R, Zigmond E, Vugman M, et al. Tumor macrophages are pivotal constructors of tumor collagenous matrix. J Exp Med. 2016;213(11):2315–2331.
  • Chang MY, Chan CK, Braun KR, et al . Monocyte-to-macrophage differentiation: synthesis and secretion of a complex extracellular matrix. J Biol Chem. 2012;287(17):14122–14135.
  • Sangaletti S, Di Carlo E, Gariboldi S, et al. Macrophage-derived SPARC bridges tumor cell-extracellular matrix interactions toward metastasis. Cancer Res. 2008;68(21):9050-9059.
  • Schnoor M, Cullen P, Lorkowski J, et al. Production of type VI collagen by human macrophages: a new dimension in macrophage functional heterogeneity . J Immunol. 2008;180(8):5707 -5719.
  • Zigmond E, Samia-Grinberg S, Pasmanik-Chor M, et al. Infiltrating monocyte-derived macrophages and resident Kupffer cells display different ontogeny and functions in acute liver injury . J Immunol. 2014 ;193(1):344-353.
  • Simões FC, Cahill TJ, Kenyon A, et al. Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nat Commun. 2020;11(1):600.
  • Bateman JF, Boot-Handford RP, Lamandé SR. Genetic diseases of connective tissues: cellular and extracellular effects of ECM mutations. Nat Rev Genet. 2009;10(3):173–183.
  • Eming SA, Wynn TA, Martin P. Inflammation and metabolism in tissue repair and regeneration. Science. 2017;356(6342):1026–1030.
  • Shaw TJ, Kishi K, Mori R. Wound-associated skin fibrosis: mechanisms and treatments based on modulating the inflammatory response. Endocrine Metab Immune Disord Targets. 2010;10(4):320–330.
  • Yasuda Y, Kaleta J, Brömme D. The role of cathepsins in osteoporosis and arthritis: rationale for the design of new therapeutics. Adv Drug Deliv Rev. 2005;57(7):973–993.
  • Costa AG, Cusano NE, Silva BC, et al. Cathepsin K : its skeletal actions and role as a therapeutic target in osteoporosis. Nat Rev Rheumatol. 2011;7 (8):447–456.
  • Zhang X, Boot-Handford RP, Huxley-Jones J, et al. The collagens of hydra provide insight into the evolution of metazoan extracellular matrices. J Biol Chem. 2007;282(9):6792–6802.
  • Ashhurst DE. The structure and development of insect connective tissues. In: King, R.C., Akai, H. (eds). Insect Ultrastructure. Boston, MA: Springer US; 1982. p. 313–50.
  • Ashhurst DE, Costin NM. The development of a collagenous connective tissue in the locust, Locusta migratoria. Tissue Cell. 1974;6(2):279–300.
  • Sarras MP. Components, structure, biogenesis and function of the hydra extracellular matrix in regeneration, pattern formation and cell differentiation. Int J Dev Biol. 2012;56(6-7-8):567–576.
  • Bergheim BG, Özbek S. Extracellular matrix and morphogenesis in cnidarians: a tightly knit relationship. Essays Biochem. 2019;63(3):407–416.
  • Multhaupt HAB, Leitinger B, Gullberg D, et al. Extracellular matrix component signaling in cancer. Adv Drug Deliv Rev. 2016;97:28–40.
  • Chapman JA, Kirkness EF, Simakov O, et al. The dynamic genome of Hydra. Nature. 2010;464(7288):592–596.
  • Lommel M, Strompen J, Hellewell AL, et al. Hydra mesoglea proteome identifies thrombospondin as a conserved component active in head organizer restriction . Sci Rep. 2018;8:1–18.
  • Berg HC. Random walks in biology. 1983. Princeton University Press. Japanese translation by Teramoto E., Hosei University Press, Tokyo, Japan;1989.
  • Matsubayashi Y, Sánchez-Sánchez BJ, Marcotti S, et al. Rapid homeostatic turnover of embryonic ECM during tissue morphogenesis. Dev Cell. 2020;54(1):33–42.
  • Horne-Badovinac S. Mobilizing the matrix for organ morphogenesis. Dev Cell. 2020;54(1):1–2.
  • Hamburger V, Hamilton HL. A series of normal stages in the development of the chick embryo. J Morphol. 1951;88(1):49–92.
  • Serrano Nájera G, Weijer CJ. Cellular processes driving gastrulation in the avian embryo . Mech Dev. 2020; 163:103624.
  • Sanders EJ. Labelling of basement membrane constituents in the living chick embryo during gastrulation. J Embryol Exp Morphol. 1984;79:113–123.
  • Patel VN, Rebustini IT, Hoffman MP. Salivary gland branching morphogenesis. Differentiation. 2006;74(7):349–364.
  • Bernfield M, Banerjee SD. The turnover of basal lamina glycosaminoglycan correlates with epithelial morphogenesis. Dev Biol. 1982;90(2):291–305.
  • Czirók A, Rongish BJ, Little CD. Extracellular matrix dynamics during vertebrate axis formation. Dev Biol. 2004;268(1):111–122.
  • Zamir EA, Czirók A, Cui C, et al. Mesodermal cell displacements during avian gastrulation are due to both individual cell-autonomous and convective tissue movements. Proc Natl Acad Sci USA. 2006;103(52):19806–19811.
  • Rongish BJ, Drake CJ, Argraves WS, et al. Identification of the developmental marker, JB3-antigen, as fibrillin-2 and its de novo organization into embryonic microfibrous arrays. Dev Dyn. 1998;212(3):461–471.
  • Critchley DR, England MA, Wakely J, et al. Distribution of fibronectin in the ectoderm of gastrulating chick embryos [17]. Nature. 1979;280(5722):498–500.
  • Mitrani E. Primitive streak-forming cells of the chick invaginate through a basement membrane. Wilhelm Roux’s Arch Dev Biol. 1982;191(5):320–324.
  • Zamir, A E, Rongish BJ, Little CD. The ECM moves during primitive streak formation—computation of ECM versus cellular motion. PLoS Biol. 2008;6(10):e247.
  • Aufschnaiter R, Zamir EA, Little CD, et al. In vivo imaging of basement membrane movement: ECM patterning shapes Hydra polyps. J Cell Sci. 2011;124(23):4027–4038.
  • Harunaga JS, Doyle AD, Yamada KM. Local and global dynamics of the basement membrane during branching morphogenesis require protease activity and actomyosin contractility. Dev Biol. 2014;394(2):197–205.
  • Narumiya S, Thumkeo D. Rho signaling research: history, current status and future directions. FEBS Lett. 2018;592(11):1763–1776.
  • Kyprianou C, Christodoulou N, Hamilton RS, et al. Basement membrane remodelling regulates mouse embryogenesis. Nature. 2020;582(7811):253–258.
  • Ostap EM. 2,3-Butanedione monoxime (BDM) as a myosin inhibitor. J Muscle Res Cell Motil. 2002;23(4):305–308.
  • Bortier H, Callebaut, M, van Nueten E, et al. Autoradiographic evidence for the sliding of the upper layer over the basement membrane in chicken blastoderms during gastrulation. Eur J Morphol. 2001; 39(2):91–98.
  • Bénazéraf B, Francois P, Baker RE, et al. A random cell motility gradient downstream of FGF controls elongation of an amniote embryo. Nature. 2010;466(7303):248–252.
  • Gross J. How tadpoles lose their tails: Path to discovery of the first matrix metalloproteinase. Matrix Biol. 2004; 23(1):3–13.
  • Gross J, Lapiere CM . Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci USA. 1962;48(6):1014–1022.
  • Woessner JF. MMPS and TIMPS2 - an historical perspective. Appl Biochem Biotechnol - Part B Mol Biotechnol. 2002;22(1):33–49.
  • Shiomi T, Lemaître V, D’Armiento J, et al. Matrix metalloproteinases, a disintegrin and metalloproteinases, and a disintegrin and metalloproteinases with thrombospondin motifs in non-neoplastic diseases. Pathol Int. 2010;60(7):477–496.
  • Itoh Y. Membrane-type matrix metalloproteinases: Their functions and regulations. Matrix Biol. 2015;44–46:207–223.
  • Yuzhalin AE, Lim SY, Kutikhin AG, et al. Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis. Biochim Biophys Acta - Rev Cancer. 2018;1870(2):207–228.
  • Fields GB. Interstitial collagen catabolism. J Biol Chem. 2013;288(13):8785–8793.
  • Dai R, Wu Z, Chu HY, et al. Cathepsin K: the action in and beyond bone. Front Cell Dev Biol. 2020;8:433.
  • Gross J. Studies on the biology of connective tissues: remodelling of collagen in metamorphosis. Medicine (Baltimore). 1964;43:291–304.
  • Beavan LA, Davies M, Couchman JR, et al. In vivo turnover of the basement membrane and other heparan sulfate proteoglycans of rat glomerulus. Arch Biochem Biophys. 1989;269(2):576–585.
  • Cohen MP, Surma M. Renal glomerular basement membrane. In vivo biosynthesis and turnover in normal rats. J Biol Chem. 1980;255(5):1767–1770.
  • Schleicher E, Wieland OH. Kinetic analysis of glycation as a tool for assessing the half-life of proteins. Biochim Biophys Acta - Gen Subj. 1986;884(1):199–205.
  • Graveley BR, Brooks AN, Carlson JW, et al. The developmental transcriptome of Drosophila melanogaster. Nature. 2011;471(7339):473–479.
  • Ho DD, Neumann AU, Perelson AS, et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995;373(6510):123–126.
  • Perelson AS, Neumann AU, Markowitz M, et al. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science. 1996;271(5255):1582–1586.
  • Schwanhaüsser B, Busse D, Li N, et al. Global quantification of mammalian gene expression control. Nature. 2011;473(7347):337–342.
  • Marcotti S, Sánchez-Sánchez BJ, Serna-Morales E, et al. Protocol for intervention-free quantification of protein turnover rate by steady-state modeling. STAR Protoc. 2021;2(1):100377.
  • Dai J, Estrada B, Jacobs S, et al. Dissection of Nidogen function in Drosophila reveals tissue-specific mechanisms of basement membrane assembly. PLoS Genet. 2018;14(9):e1007483.
  • Wolfstetter G, Dahlitz I, Pfeifer K, et al. Characterization of Drosophila Nidogen/entactin reveals roles in basement membrane stability, barrier function and nervous system patterning. Development. 2019;146(2):dev168948.
  • Page-McCaw A, Serano J, Santé JM, et al. Drosophila matrix metalloproteinases are required for tissue remodeling, but not embryonic development. Dev Cell. 2003;4(1):95–106.
  • Skeath JB, Wilson BA, Romero SE, et al. The extracellular metalloprotease AdamTS-A anchors neural lineages in place within and preserves the architecture of the central nervous system. Development. 2017;144(17):3102–3113.
  • Stevens LJ, Page-McCaw A. A secreted MMP is required for reepithelialization during wound healing. Mol Biol Cell. 2012;23(6):1068–1079.
  • Olofsson B, Page DT. Condensation of the central nervous system in embryonic Drosophila is inhibited by blocking hemocyte migration or neural activity. Dev Biol. 2005;279(1):233–243.
  • Urbano JM, Torgler CN, Molnar C, et al. Drosophila laminins act as key regulators of basement membrane assembly and morphogenesis. Development. 2009;136(24):4165–4176.
  • Condeelis J. How is actin polymerization nucleated in vivo? Trends Cell Biol. 2001;11(7):288–293.
  • Alford AI, Kozloff KM, Hankenson KD. Extracellular matrix networks in bone remodeling. Int J Biochem Cell Biol. 2015;65:20–31.
  • Maroudas A, Bayliss MT, Uchitel-Kaushansky N, et al. Aggrecan turnover in human articular cartilage: Use of aspartic acid racemization as a marker of molecular age. Arch Biochem Biophys. 1998;350(1):61–71.
  • Verzijl N, DeGroot J, Thorpe SR, et al. Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem. 2000;275(50):39027–39031.
  • Sivan SS, Tsitron E, Wachtel E, et al. Aggrecan turnover in human intervertebral disc as determined by the racemization of aspartic acid. J Biol Chem. 2006;281(19):13009–13014.
  • Sivan SS, Wachtel E, Tsitron E, et al. Collagen turnover in normal and degenerate human intervertebral discs as determined by the racemization of aspartic acid. J Biol Chem. 2008;283(14):8796–8801.
  • Thorpe CT, Streeter I, Pinchbeck GL, et al. Aspartic acid racemization and collagen degradation markers reveal an accumulation of damage in tendon collagen that is enhanced with aging. J Biol Chem. 2010;285(21):15674–15681.
  • Heinemeier KM, Schjerling P, Heinemeier J, et al. Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb 14 C. FASEB J. 2013;27(5):2074–2079.
  • Dideriksen K, Sindby AKR, Krogsgaard M, et al. Effect of acute exercise on patella tendon protein synthesis and gene expression. Springerplus. 2013;2(1):1–8.
  • Chang J, Garva R, Pickard A, et al. Circadian control of the secretory pathway maintains collagen homeostasis. Nat Cell Biol. 2020;22(1):74–86.
  • Dudek M, Gossan N, Yang N, et al. The chondrocyte clock gene Bmal1 controls cartilage homeostasis and integrity. J Clin Invest. 2016;126(1):365–376.
  • Dudek M, Yang N, Ruckshanthi JPD, et al. The intervertebral disc contains intrinsic circadian clocks that are regulated by age and cytokines and linked to degeneration. Ann Rheum Dis. 2017;76(3):576–584.
  • Bunger MK, Walisser JA, Sullivan R, et al. Progressive arthropathy in mice with a targeted disruption of theMop3/Bmal-1 locus. Genesis. 2005;41(3):122–132.
  • Yeung C-YC, Gossan N, Lu Y, et al. Gremlin-2 is a BMP antagonist that is regulated by the circadian clock. Sci Rep. 2014;4(1):5183.
  • Morris H, Gonçalves CF, Dudek M, et al. Tissue physiology revolving around the clock: Circadian rhythms as exemplified by the intervertebral disc. Ann Rheum Dis. 2021;80(7):828–839.
  • Stopak D, Harris AK. Connective tissue morphogenesis by fibroblast traction. I. Tissue culture observations. Dev Biol. 1982;90(2):383–398.
  • Voiculescu O, Bertocchini F, Wolpert L, et al. The amniote primitive streak is defined by epithelial cell intercalation before gastrulation. Nature. 2007;449(7165):1049–1052.
  • Halfter W, Monnier C, Müller D, et al. The bi-functional organization of human basement membranes. PLoS One. 2013;8(7):e67660.
  • Newman SA, Frenz DA, Tomasek JJ, et al. Matrix-driven translocation of cells and nonliving particles. Science. 1985;228(4701):885–889.
  • Newman SA, Frenz DA, Hasegawa E, et al. Matrix-driven translocation: dependence on interaction of amino-terminal domain of fibronectin with heparin-like surface components of cells or particles. Proc Natl Acad Sci USA. 1987;84(14):4791–4795.
  • Serna-Morales E, Sanchez-Sanchez BJ, Marcotti S, et al. Extracellular matrix assembly stress drives Drosophila central nervous system morphogenesis. bioRxiv. 2022:488510.
  • Ishihara S, Sugimura K. Bayesian inference of force dynamics during morphogenesis. J Theor Biol. 2012;313:201–211.
  • Davis JR, Luchici A, Mosis F, et al. Inter-cellular forces orchestrate contact inhibition of locomotion. Cell. 2015;161(2):361–373.
  • Chlasta J, Milani P, Runel G, et al. Variations in basement membrane mechanics are linked to epithelial morphogenesis. Development. 2017;144(23):4350–4362.
  • Sun Z, Amourda C, Shagirov M, et al. Basolateral protrusion and apical contraction cooperatively drive Drosophila germ-band extension. Nat Cell Biol. 2017;19(4):375–383.
  • Khalilgharibi N, Fouchard J, Asadipour N, et al. Stress relaxation in epithelial monolayers is controlled by the actomyosin cortex. Nat Phys. 2019;15(8):839–847.
  • Tozluoglu M, Duda M, Kirkland NJ, et al. Planar differential growth rates initiate precise fold positions in complex epithelia. Dev Cell. 2019;51(3):299–312.e4.
  • Duda M, Kirkland NJ, Khalilgharibi N, et al. Polarization of Myosin II Refines Tissue Material Properties to Buffer Mechanical Stress. Dev Cell. 2019;48(2):245–260.e7.
  • Fiore VF, Krajnc M, Quiroz FG, et al. Mechanics of a multilayer epithelium instruct tumour architecture and function. Nature. 2020;585(7825):433–439.
  • Wang S, Matsumoto K, Lish SR, et al. Budding epithelial morphogenesis driven by cell-matrix versus cell-cell adhesion. Cell. 2021;184(14):3702–3716.
  • Gautieri A, Russo A, Vesentini S, et al. Coarse-grained model of collagen molecules using an extended MARTINI force field. J Chem Theory Comput. 2010;6(4):1210–1218.
  • Wong H, Crowet J-M, Dauchez M, et al. Multiscale modelling of the extracellular matrix. Matrix Biol Plus. 2022;13:100096.
  • Khalilgharibi N, Mao Y. To form and function: on the role of basement membrane mechanics in tissue development, homeostasis and disease. Open Biol. 2021;11(2):200360.
  • Krause M, Gautreau A. Steering cell migration: lamellipodium dynamics and the regulation of directional persistence. Nat Rev Mol Cell Biol. 2014;15:577–590.
  • Mattila PK, Lappalainen P. Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol. 2008;9(6):446–454.
  • Millard TH, Sharp SJ, Machesky LM. Signalling to actin assembly via the WASP (Wiskott-Aldrich syndrome protein)-family proteins and the Arp2/3 complex. Biochem J. 2004;380(1):1–17.
  • Gudimchuk NB, McIntosh JR. Regulation of microtubule dynamics, mechanics and function through the growing tip. Nat Rev Mol Cell Biol. 2021;22(12):777–795.
  • Lindemann CB, Lesich KA. Flagellar and ciliary beating: the proven and the possible. J. Cell Sci. 2010; 123:519–528.
  • Hill TL. Microfilament or microtubule assembly or disassembly against a force. Proc Natl Acad Sci USA. 1981;78(9):5613–5617.
  • Joglekar AP, Bloom KS, Salmon ED. Mechanisms of force generation by end-on kinetochore-microtubule attachments. Curr Opin Cell Biol. 2010;22(1):57–67.
  • Srivastava A, Pastor-Pareja JC, Igaki T, Pagliarini R, Xu T. Basement membrane remodeling is essential for Drosophila disc eversion and tumor invasion. Proc Natl Acad Sci. 2007;104(8):2721–2726.
  • Paajanen H, Lehto I, Alanen A, et al. Diurnal fluid changes of lumbar discs measured indirectly by magnetic resonance imaging. J Orthop Res. 1994;12(4):509–514.
  • Adams MA, Doland P, Hutton WC, et al. Diurnal changes in spinal mechanics and their clinical significance. J Bone Jt Surg - Ser B. 1990;72(2):266–270.
  • Boos N, Wallin A, Gbedegbegnon T, et al. MR imaging of lumbar intervertebral disks and vertebral bodies: Influence of diurnal water content variations. Radiology. 1993;188(2):351–354.
  • Mills RP, King RC. The pericardial cells of Drosophila melanogaster. Q J Microsc Sci. 1965;106(3):261–268.
  • Soukup SF, Culi J, Gubb D. Uptake of the necrotic serpin in Drosophila melanogaster via the lipophorin receptor-1. PLoS Genet. 2009;5(6):e1000532.
  • Das D, Aradhya R, Ashoka D, et al. Macromolecular uptake in Drosophila pericardial cells requires rudhira function. Exp Cell Res. 2008;314(8):1804–1810.
  • Weavers H, Prieto-Sánchez S, Grawe F, et al. The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm. Nature. 2009;457(7227):322–326.
  • Hartley PS, Motamedchaboki K, Bodmer R, et al. SPARC–dependent cardiomyopathy in Drosophila. Circ Cardiovasc Genet. 2016;9(2):119–129.
  • Iizuka R, Yamagishi-Shirasaki M, Funatsu T. Kinetic study of de novo chromophore maturation of fluorescent proteins. Anal Biochem. 2011;414(2):173–178.
  • Corish P, Tyler-Smith C. Attenuation of green fluorescent protein half-life in mammalian cells. Protein Eng Des Sel. 1999;12(12):1035–1040.
  • Tchourine K, Poultney CS, Wang L, et al. One third of dynamic protein expression profiles can be predicted by a simple rate equation. Mol BioSyst. 2014;10(11):2850–2862.
  • Morris JL, Cross SJ, Lu Y, et al. Live imaging of collagen deposition during skin development and repair in a collagen I – GFP fusion transgenic zebrafish line. Dev Biol. 2018;441(1):4–11.
  • Calverley BC, Kadler KE, Pickard A. Dynamic high-sensitivity quantitation of procollagen-I by endogenous CRISPR-Cas9 nanoLuciferase tagging. Cells. 2020;9(9):2070.
  • Sarov M, Barz C, Jambor H, et al. A genome-wide resource for the analysis of protein localisation in Drosophila. Elife. 2016;5:e12068.
  • Brayford S, Kenny FN, Hiratsuka T, et al. Heterotypic contact inhibition of locomotion can drive cell sorting between epithelial and mesenchymal cell populations. J Cell Sci. 2019;132(11): jcs223974.
  • Fenteany G, Janmey PA, Stossel TP. Signaling pathways and cell mechanics involved in wound closure by epithelial cell sheets. Curr Biol. 2000;10(14):831–838.
  • Matsubayashi Y, Ebisuya M, Honjoh S, et al. ERK activation propagates in epithelial cell sheets and regulates their migration during wound healing. Curr Biol. 2004;14(8):731–735.
  • Nikolic DL, Boettiger AN, Bar-Sagi D, et al. Role of boundary conditions in an experimental model of epithelial wound healing. Am J Physiol Physiol. 2006;291(1):C68–C75.
  • Law AL, Jalal S, Pallett T, et al. Nance-Horan Syndrome-like 1 protein negatively regulates Scar/WAVE-Arp2/3 activity and inhibits lamellipodia stability and cell migration. Nat Commun. 2021;12:1–20.
  • Morita R, Sanzen N, Sasaki H, et al. Tracing the origin of hair follicle stem cells. Nature. 2021;594(7864):547–552.
  • Richardson J, Gauert A, Briones Montecinos L, et al. Leader cells define directionality of trunk, but not cranial, neural crest cell migration. Cell Rep. 2016;15(9):2076–2088.
  • Szabó A, Melchionda M, Nastasi G, et al. In vivo confinement promotes collective migration of neural crest cells. J Cell Biol. 2016;213(5):543–555.
  • Sánchez-Sánchez BJ, Urbano JM, Comber K, et al. Drosophila embryonic hemocytes produce laminins to strengthen migratory response. Cell Rep. 2017;21(6):1461–1470.
  • Yolland L, Burki M, Marcotti S, et al. Persistent and polarized global actin flow is essential for directionality during cell migration. Nat Cell Biol. 2019;21(11):1370–1381.
  • Redd MJ, Kelly G, Dunn G, et al. Imaging macrophage chemotaxis in vivo: Studies of microtubule function in zebrafish wound inflammation. Cell Motil Cytoskeleton. 2006;63(7):415–422.
  • Cvejic A, Hall C, Bak-Maier M, et al. Analysis of WASp function during the wound inflammatory response - Live-imaging studies in zebrafish larvae. J Cell Sci. 2008;121(19):3196–3206.
  • Daha MR, Blok APR, De Graeff J, et al. Synthesis and degradation of glomerular basement membrane in rats with nephrotoxic nephritis. Nephron. 1978;22(4-6):522–528.
  • Cohen MP, Linda Surma M. In vivo biosynthesis and turnover of 35S-labeled glomerular basement membrane. Biochim Biophys Acta - Gen Subj. 1982;716(3):337–340.
  • Cohen MP, Surma ML. Effect of diabetes on in vivo metabolism of [35S]-labeled glomerular basement membrane. Diabetes. 1984;33(1):8–12.
  • Trier JS, Allan CH, Abrahamson DR, et al. Epithelial basement membrane of mouse jejunum. Evidence for laminin turnover along the entire crypt-villus axis. J Clin Invest. 1990;86(1):87–95.
  • Castillo GM, Templeton DM. Structure and metabolism of multiple heparan sulphate proteoglycans synthesized by the isolated rat glomerulus. Biochim Biophys Acta - Mol Cell Res. 1992;1136(2):119–128.
  • Akuffo EL, Hunt JR, Moss J, et al. A steady-state labelling approach to the measurement of proteoglycan turnover in vivo and its application to glomerular proteoglycans. Biochem J. 1996;320(1):301–308.
  • Urich D, Eisenberg JL, Hamill KJ, et al. Lung-specific loss of the laminin α3 subunit confers resistance to mechanical injury. J Cell Sci. 2011;124(17):2927–2937.