694
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

The astrocyte-enriched gene deathstar plays a crucial role in the development, locomotion, and lifespan of D. melanogaster

, , , , ORCID Icon & ORCID Icon
Article: 2368336 | Received 22 Oct 2023, Accepted 11 Jun 2024, Published online: 17 Jun 2024

References

  • Tolwinski NS. Introduction: Drosophila—A model system for developmental biology. MDPI; 2017. p. 9.
  • Spindler SR, Hartenstein V. The Drosophila neural lineages: a model system to study brain development and circuitry. Dev Genes Evol. 2010;220(1–2):1–18. doi: 10.1007/s00427-010-0323-7
  • Zhu B, Pennack JA, McQuilton P, et al. Drosophila neurotrophins reveal a common mechanism for nervous system formation. PLoS Biol. 2008;6(11):e284. doi: 10.1371/journal.pbio.0060284
  • Neckameyer WS, Argue KJ. Comparative approaches to the study of physiology: Drosophila as a physiological tool. Am J Physiol Regul Integr Comp Physiol. 2013;304(3):R177–R88. doi: 10.1152/ajpregu.00084.2012
  • Shin M, Copeland JM, Venton BJ. Drosophila as a model system for neurotransmitter measurements. ACS Chem Neurosci. 2018;9(8):1872–1883. doi: 10.1021/acschemneuro.7b00456
  • Kim T, Song B, Lee I-S. Drosophila glia: models for human neurodevelopmental and neurodegenerative disorders. Int J Mol Sci. 2020;21(14):4859. doi: 10.3390/ijms21144859
  • Devineni AV, Scaplen KM. Neural circuits underlying behavioral flexibility: insights from Drosophila. Front Behav Neurosci. 2022;15:821680. doi: 10.3389/fnbeh.2021.821680
  • Huser A, Rohwedder A, Apostolopoulou AA, et al. The serotonergic central nervous system of the Drosophila larva: anatomy and behavioral function. PLOS ONE. 2012;7(10):e47518. doi: 10.1371/journal.pone.0047518
  • Yildirim K, Petri J, Kottmeier R, et al. Drosophila glia: Few cell types and many conserved functions. Glia. 2019;67(1):5–26. doi: 10.1002/glia.23459
  • Bittern J, Pogodalla N, Ohm H, et al. Neuron–glia interaction in the Drosophila nervous system. Dev Neurobiol. 2021;81(5):438–452. doi: 10.1002/dneu.22737
  • Mayer F, Mayer N, Chinn L, et al. Evolutionary conservation of vertebrate blood–brain barrier chemoprotective mechanisms in Drosophila. J Neurosci. 2009;29(11):3538–3550. doi: 10.1523/JNEUROSCI.5564-08.2009
  • DeSalvo MK, Hindle SJ, Rusan ZM, et al. The Drosophila surface glia transcriptome: evolutionary conserved blood-brain barrier processes. Front Neurosci. 2014;8:113393. doi: 10.3389/fnins.2014.00346
  • Pfeiffer BD, Jenett A, Hammonds AS, et al. Tools for neuroanatomy and neurogenetics in Drosophila. Proc Natl Acad Sci USA. 2008;105(28):9715–9720. doi: 10.1073/pnas.0803697105
  • Luan H, Diao F, Scott RL, et al. The Drosophila split Gal4 system for neural circuit mapping. Front Neural Circuits. 2020;14:603397. doi: 10.3389/fncir.2020.603397
  • Freeman MR. Drosophila central nervous system glia. Cold Spring harbor perspectives in biology. Cold Spring Harbor Perspect Biol. 2015;7(11):a020552. doi: 10.1101/cshperspect.a020552
  • Kremer MC, Jung C, Batelli S, et al. The glia of the adult D rosophila nervous system. Glia. 2017;65(4):606–638. doi: 10.1002/glia.23115
  • Jenett A, Rubin GM, Ngo T-T, et al. A GAL4-driver line resource for Drosophila neurobiology. Cell Rep. 2012;2(4):991–1001. doi: 10.1016/j.celrep.2012.09.011
  • Weaver LN, Ma T, Drummond-Barbosa D. Analysis of Gal4 expression patterns in adult Drosophila females. G3: Genes Genomes Genetics. 2020;10(11):4147–4158. doi: 10.1534/g3.120.401676
  • Chen Y-C, Chen Y-C, Rajesh R, et al. Using single-cell RNA sequencing to generate predictive cell-type-specific split-GAL4 reagents throughout development. Proc Natl Acad Sci USA. 2023;120(32):e2307451120. doi: 10.1073/pnas.2307451120
  • Yeung K, Bollepogu Raja KK, Shim Y-K, et al. Single cell RNA sequencing of the adult drosophila eye reveals distinct clusters and novel marker genes for all major cell types. Commun Biol. 2022;5(1):1370. doi: 10.1038/s42003-022-04337-1
  • Bollepogu Raja KK, Yeung K, Shim Y-K, et al. A single cell genomics atlas of the drosophila larval eye reveals distinct photoreceptor developmental timelines. Nat Commun. 2023;14(1):7205. doi: 10.1038/s41467-023-43037-0
  • Fu Y, Huang X, Zhang P, et al. Single-cell RNA sequencing identifies novel cell types in drosophila blood. J Genet Genome. 2020;47(4):175–186. doi: 10.1016/j.jgg.2020.02.004
  • Henry GL, Davis FP, Picard S, et al. Cell type–specific genomics of drosophila neurons. Nucleic Acids Res. 2012;40(19):9691–9704. doi: 10.1093/nar/gks671
  • Palmateer CM, Artikis C, Brovero SG, et al. Single-cell transcriptome profiles of Drosophila fruitless-expressing neurons from both sexes. Elife. 2023;12:e78511. doi: 10.7554/eLife.78511
  • Konstantinides N, Kapuralin K, Fadil C, et al. Phenotypic convergence: distinct transcription factors regulate common terminal features. Cell. 2018;174(3):622–35. e13. doi: 10.1016/j.cell.2018.05.021
  • Croset V, Treiber CD, Waddell S. Cellular diversity in the Drosophila midbrain revealed by single-cell transcriptomics. Elife. 2018;7:e34550. doi: 10.7554/eLife.34550
  • Pacifico R, MacMullen CM, Walkinshaw E, et al. Brain transcriptome changes in the aging Drosophila melanogaster accompany olfactory memory performance deficits. PLOS ONE. 2018;13(12):e0209405. doi: 10.1371/journal.pone.0209405
  • Babicki S, Arndt D, Marcu A, et al. Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 2016;44(W1):W147–W53. doi: 10.1093/nar/gkw419
  • Wickham H. ggplot2: Elegant Graphics for Data Analysis. Use R!. Springer International Publishing, Cham; 2016. p. 203–220. doi: 10.1007/978-3-319-24277-4_10
  • Kolde R, Kolde MR. Package ‘pheatmap’. R Package. 2015;1(7):790.
  • Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47–e. doi: 10.1093/nar/gkv007
  • Schober P, Vetter TR. Two-sample unpaired t tests in medical research. Anesthesia Analgesia. 2019;129(4):911. doi: 10.1213/ANE.0000000000004373
  • Oliveros JV. An interactive tool for comparing lists with Venn’s diagrams. 2007–2015. 2016 [cited 2021 Jul 15].
  • Sievers F, Wilm A, Dineen D, et al. Fast, scalable generation of high‐quality protein multiple sequence alignments using clustal omega. Mol Syst Biol. 2011;7(1):539. doi: 10.1038/msb.2011.75
  • Goujon M, McWilliam H, Li W, et al. A new bioinformatics analysis tools framework at EMBL–EBI. Nucleic Acids Res. 2010;38(suppl_2):W695–W699. doi: 10.1093/nar/gkq313
  • Guo A, Li L, Xia S, et al. Conditioned visual flight orientation in Drosophila: dependence on age, practice, and diet. Learn Memory. 1996;3(1):49–59. doi: 10.1101/lm.3.1.49
  • Brand AH, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993;118(2):401–415. doi: 10.1242/dev.118.2.401
  • Hawley HR, Roberts CJ, Fitzsimons HL. Comparison of neuronal GAL4 drivers along with the AGES (auxin-inducible gene expression system) and TARGET (temporal and regional gene expression targeting) systems for fine tuning of neuronal gene expression in Drosophila. MicroPubl Biol. 2023;2023. doi: 10.17912/micropub.biology.000885
  • Kim WJ, Jan LY, Jan YN. A PDF/NPF neuropeptide signaling circuitry of male Drosophila melanogaster controls rival-induced prolonged mating. Neuron. 2013;80(5):1190–1205. doi: 10.1016/j.neuron.2013.09.034
  • Wu JS, Luo L. A protocol for dissecting Drosophila melanogaster brains for live imaging or immunostaining. Nat Protoc. 2006;1(4):2110–2115. doi: 10.1038/nprot.2006.336
  • Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671. doi: 10.1038/nmeth.2089
  • Mi K, Li Y, Yang Y, et al. DVT: a high-throughput analysis pipeline for locomotion and social behavior in adult Drosophila melanogaster. Cell Biosci. 2023;13(1):187. doi: 10.1186/s13578-023-01125-0
  • Scaplen KM, Mei NJ, Bounds HA, et al. Automated real-time quantification of group locomotor activity in drosophila melanogaster. Sci Rep. 2019;9(1):4427. doi: 10.1038/s41598-019-40952-5
  • Linford NJ, Bilgir C, Ro J, et al. Measurement of Lifespan in Drosophila melanogaster. J Vis Exp. 2013 71;(71):e50068. doi: 10.3791/50068-v
  • Stalpers LJ, Kaplan EL, Edward L. Kaplan and the Kaplan-Meier survival curve. BSHM Bull: J Br Soc For the Hist Off Math. 2018;33(2):109–135. doi: 10.1080/17498430.2018.1450055
  • Brunet Avalos C, Maier GL, Bruggmann R, et al. Single cell transcriptome atlas of the Drosophila larval brain. Elife. 2019;8:e50354. doi: 10.7554/eLife.50354
  • McLaughlin CN, Brbić M, Xie Q, et al. Single-cell transcriptomes of developing and adult olfactory receptor neurons in Drosophila. Elife. 2021;10:e63856. doi: 10.7554/eLife.63856
  • Deitcher DL, Ueda A, Stewart BA, et al. Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in theDrosophila gene neuronal-synaptobrevin. J Neurosci. 1998;18(6):2028–2039. doi: 10.1523/JNEUROSCI.18-06-02028.1998
  • Robinow S, White K. Characterization and spatial distribution of the ELAV protein during drosophila melanogaster development. J Neurobiol. 1991;22(5):443–461. doi: 10.1002/neu.480220503
  • Peco E, Davla S, Camp DM, et al. Drosophila astrocytes cover specific territories of the CNS neuropil and are instructed to differentiate by Prospero, a key effector of Notch. Development. 2016;143(7):1170–1181. doi: 10.1242/dev.133165
  • Huang Y, Ng FS, Jackson FR. Comparison of larval and adult drosophila astrocytes reveals stage-specific gene expression profiles. G3. Genes Genomes Genetics. 2015;5(4):551–558. doi: 10.1534/g3.114.016162
  • Doherty J, Logan MA, Taşdemir ÖE, et al. Ensheathing glia function as phagocytes in the adult Drosophila brain. J Neurosci. 2009;29(15):4768–4781. doi: 10.1523/JNEUROSCI.5951-08.2009
  • Sinakevitch I, Grau Y, Strausfeld NJ, et al. Dynamics of glutamatergic signaling in the mushroom body of young adult Drosophila. Neural Dev. 2010;5(1):10–20. doi: 10.1186/1749-8104-5-10
  • Suh J, Jackson FR. Drosophila ebony activity is required in glia for the circadian regulation of locomotor activity. Neuron. 2007;55(3):435–447. doi: 10.1016/j.neuron.2007.06.038
  • Stork T, Sheehan A, Tasdemir-Yilmaz OE, et al. Neuron-glia interactions through the Heartless FGF receptor signaling pathway mediate morphogenesis of Drosophila astrocytes. Neuron. 2014;83(2):388–403. doi: 10.1016/j.neuron.2014.06.026
  • Dillon N, Cocanougher B, Sood C, et al. Single cell RNA-seq analysis reveals temporally-regulated and quiescence-regulated gene expression in Drosophila larval neuroblasts. Neural Dev. 2022;17(1):1–18. doi: 10.1186/s13064-022-00163-7
  • Schwabe T, Bainton RJ, Fetter RD, et al. GPCR signaling is required for blood-brain barrier formation in Drosophila. Cell. 2005;123(1):133–144. doi: 10.1016/j.cell.2005.08.037
  • Bainton RJ, Tsai L-Y, Schwabe T, et al. moody encodes two GPCRs that regulate cocaine behaviors and blood-brain barrier permeability in Drosophila. Cell. 2005;123(1):145–156. doi: 10.1016/j.cell.2005.07.029
  • Rujano MA, Briand D, Ðelić B, et al. An interplay between cellular growth and atypical fusion defines morphogenesis of a modular glial niche in Drosophila. Nat Commun. 2022;13(1):4999. doi: 10.1038/s41467-022-32685-3
  • Speder P, Brand AH. Systemic and local cues drive neural stem cell niche remodelling during neurogenesis in Drosophila. Elife. 2018;7:e30413. doi: 10.7554/eLife.30413
  • Sheng L, Shields EJ, Gospocic J, et al. Social reprogramming in ants induces longevity-associated glia remodeling. Sci Adv. 2020;6(34):eaba9869. doi: 10.1126/sciadv.aba9869
  • Ren Q, Awasaki T, Wang Y-C, et al. Lineage-guided Notch-dependent gliogenesis by Drosophila multi-potent progenitors. Development. 2018;145(11):dev160127. doi: 10.1242/dev.160127
  • Davie K, Janssens J, Koldere D, et al. A single-cell transcriptome atlas of the aging Drosophila brain. Cell. 2018;174(4):982–98. e20. doi: 10.1016/j.cell.2018.05.057
  • Holcroft CE, Jackson WD, Lin W-H, et al. Innexins ogre and Inx2 are required in glial cells for normal postembryonic development of the drosophila central nervous system. J Cell Sci. 2013;126(17):3823–3834. doi: 10.1242/jcs.117994
  • Luna AJF, Perier M, Seugnet L. Amyloid precursor protein in drosophila glia regulates sleep and genes involved in glutamate recycling. J Neurosci. 2017;37(16):4289–4300. doi: 10.1523/JNEUROSCI.2826-16.2017
  • Chaturvedi R, Reddig K, H-S L. Long-distance mechanism of neurotransmitter recycling mediated by glial network facilitates visual function in Drosophila. Proc Natl Acad Sci USA. 2014;111(7):2812–2817. doi: 10.1073/pnas.1323714111
  • Hartenstein V. Morphological diversity and development of glia in Drosophila. Glia. 2011;59(9):1237–1252. doi: 10.1002/glia.21162
  • Stacey SM, Muraro NI, Peco E, et al. Drosophila glial glutamate transporter Eaat1 is regulated by fringe-mediated notch signaling and is essential for larval locomotion. J Neurosci. 2010;30(43):14446–14457. doi: 10.1523/JNEUROSCI.1021-10.2010
  • You S, Yu AM, Roberts MA, et al. Circadian regulation of the Drosophila astrocyte transcriptome. PloS Genet. 2021;17(9):e1009790. doi: 10.1371/journal.pgen.1009790
  • Corrales M, Cocanougher BT, Kohn AB, et al. A single-cell transcriptomic atlas of complete insect nervous systems across multiple life stages. Neural Dev. 2022;17(1):8. doi: 10.1186/s13064-022-00164-6
  • Rival T, Soustelle L, Cattaert D, et al. Physiological requirement for the glutamate transporter dEAAT1 at the adult drosophila neuromuscular junction. J Neurobiol. 2006;66(10):1061–1074. doi: 10.1002/neu.20270
  • Freeman MR, Delrow J, Kim J, et al. Unwrapping glial biology: Gcm target genes regulating glial development, diversification, and function. Neuron. 2003;38(4):567–580. doi: 10.1016/S0896-6273(03)00289-7
  • Gramates LS, Agapite J, Attrill H, et al. FlyBase: a guided tour of highlighted features. Genetics. 2022;220(4):iyac035. doi: 10.1093/genetics/iyac035
  • Miao H, Wei Y, Lee SG, et al. Glia‐specific expression of neuropeptide receptor Lgr4 regulates development and adult physiology in Drosophila. J of Neurosci Res. 2024;102(1):e25271. doi: 10.1002/jnr.25271
  • Urbach R, Technau GM. Molecular markers for identified neuroblasts in the developing brain of Drosophila. Development. 2003;130(16):3621–3637. doi: 10.1242/dev.00533
  • Schneider-Mizell CM, Gerhard S, Longair M, et al. Quantitative neuroanatomy for connectomics in Drosophila. Elife. 2016;5:e12059. doi: 10.7554/eLife.12059
  • Sterne GR, Otsuna H, Dickson BJ, et al. Classification and genetic targeting of cell types in the primary taste and premotor center of the adult Drosophila brain. Elife. 2021;10:e71679. doi: 10.7554/eLife.71679
  • Malin J, Desplan C. Neural specification, targeting, and circuit formation during visual system assembly. Proc Natl Acad Sci USA. 2021;118(28):e2101823118. doi: 10.1073/pnas.2101823118
  • Awasaki T, Lai S-L, Ito K, et al. Organization and postembryonic development of glial cells in the adult central brain of Drosophila. J Neurosci. 2008;28(51):13742–13753. doi: 10.1523/JNEUROSCI.4844-08.2008
  • Stork T, Bernardos R, Freeman MR. Analysis of glial cell development and function in Drosophila. Cold Spring Harb Protoc. 2012;(1):1. doi: 10.1101/pdb.top067587
  • Crews ST. Drosophila embryonic CNS development: neurogenesis, gliogenesis, cell fate, and differentiation. Genetics. 2019;213(4):1111–1144. doi: 10.1534/genetics.119.300974
  • Jones BW. Glial cell development in the drosophila embryo. BioEssays. 2001;23(10):877–887. doi: 10.1002/bies.1129
  • Ueda M, Sato T, Ohkawa Y, et al. Identification of miR‐305, a micro RNA that promotes aging, and its target mRNA s in Drosophila. Genes Cells. 2018;23(2):80–93. doi: 10.1111/gtc.12555
  • Zhang L, Zhang S, Wang R, et al. Genome-wide identification of long noncoding RNA and their potential interactors in ISWI mutants. Int J Mol Sci. 2022;23(11):6247. doi: 10.3390/ijms23116247
  • Baker BM, Mokashi SS, Shankar V, et al. The Drosophila brain on cocaine at single-cell resolution. Genome Res. 2021;31(10):1927–1937. doi: 10.1101/gr.268037.120
  • Amador Rios R. Unravelling the role of long noncoding RNAs in the context of cell-growth and regeneration [ Doctoral dissertation]. Universitat de Barcelona; 2022.
  • Li H, Janssens J, De Waegeneer M, et al. Fly cell atlas: a single-nucleus transcriptomic atlas of the adult fruit fly. Science. 2022;375(6584):eabk2432. doi: 10.1126/science.abk2432
  • Xiong W-C, Okano H, Patel NH, et al. repo encodes a glial-specific homeo domain protein required in the drosophila nervous system. Genes Dev. 1994;8(8):981. doi: 10.1101/gad.8.8.981
  • Yuasa Y, Okabe M, Yoshikawa S, et al. Drosophila homeodomain protein REPO controls glial differentiation by cooperating with ETS and BTB transcription factors. Development. 2003;130(11):2419–2428. doi: 10.1242/dev.00468
  • Ferreira AGA, Desplan C. An atlas of the developing drosophila visual system glia and subcellular mRNA localization of transcripts in single cells. bioRxiv. 2023:2023.08. 06.552169.