3,741
Views
50
CrossRef citations to date
0
Altmetric
Review

TRPM7 and its role in neurodegenerative diseases

, , &
Pages 253-261 | Received 27 May 2015, Accepted 17 Jul 2015, Published online: 01 Sep 2015

References

  • Komuro H, Kumada T. Ca2+ transients control CNS neuronal migration. Cell Calcium 2005; 37:387-93; PMID:15820385; http://dx.doi.org/10.1016/j.ceca.2005.01.006.
  • Clapham DE. Calcium signaling. Cell 2007; 131:1047-58; PMID:18083096; http://dx.doi.org/10.1016/j.cell.2007.11.028.
  • Chauhan A, Sun Y, Pani B, Quenumzangbe F, Sharma J, Singh BB, Mishra BB. Helminth induced suppression of macrophage activation is correlated with inhibition of calcium channel activity. PLoS ONE 2014; 9:e101023; PMID:25013939; http://dx.doi.org/10.1371/journal.pone.0101023.
  • Sun Y, Chauhan A, Sukumaran P, Sharma J, Singh BB, Mishra BB. Inhibition of store-operated calcium entry in microglia by helminth factors: implications for immune suppression in neurocysticercosis. J Neuroinflammation 2014; 11:210; PMID:25539735; http://dx.doi.org/10.1186/s12974-014-0210-7.
  • Parekh AB, Penner R. Store depletion and calcium influx. Physiol Rev 1997; 77:901-30; PMID:9354808.
  • Löf C, Viitanen T, Sukumaran P, Törnquist K. TRPC2: of mice but not men. Adv Exp Med Biol 2011; 704:125-34; PMID:21290292; http://dx.doi.org/10.1007/978-94-007-0265-3_6.
  • de Baaij JH, Hoenderop JG, Bindels RJ. Magnesium in man: implications for health and disease. Physiol Rev 2015; 95:1-46; PMID:25540137; http://dx.doi.org/10.1152/physrev.00012.2014.
  • Li FY, Chaigne-Delalande B, Kanellopoulou C, Davis JC, Matthews HF, Douek DC, Cohen JI, Uzel G, Su HC, Lenardo MJ. Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature 2011; 475:471-6; PMID:21796205; http://dx.doi.org/10.1038/nature10246.
  • Anghileri LJ. Magnesium, calcium and cancer. Magnes Res 2009; 22:247-55; PMID:20228002.
  • Vidair C, Rubin H. Mg2+ as activator of uridine phosphorylation in coordination with other cellular responses to growth factors. Proc Natl Acad Sci U S A 2005; 102:662-6; PMID:15647355; http://dx.doi.org/10.1073/pnas.0409082102.
  • Rubin H. The logic of the Membrane, Magnesium, Mitosis (MMM) model for the regulation of animal cell proliferation. Arch Biochem Biophys 2007; 458:16-23; PMID:16750508; http://dx.doi.org/10.1016/j.abb.2006.03.026.
  • Rubin H. Magnesium: The missing element in molecular views of cell proliferation control. Bioessays 2005; 27:311-20; PMID:15714553; http://dx.doi.org/10.1002/bies.20183.
  • Jin J, Wu LJ, Jun J, Cheng X, Xu H, Andrews NC, Clapham DE. The channel kinase, TRPM7, is required for early embryonic development. Proc Natl Acad Sci U S A 2012; 109:E225-233; PMID:22203997; http://dx.doi.org/10.1073/pnas.1120033109.
  • Palacios-Prado N, Chapuis S, Panjkovich A, Fregeac J, Nagy JI, Bukauskas FF. Molecular determinants of magnesium-dependent synaptic plasticity at electrical synapses formed by connexin36. Nat Commun 2014; 5:4667; PMID:25135336; http://dx.doi.org/10.1038/ncomms5667.
  • Vink R, Cook NL, van den Heuvel C. Magnesium in acute and chronic brain injury: an update. Magnes Res 2009; 22:158S-62S; PMID:19780402.
  • Levitsky DO, Takahashi M. Interplay of Ca(2+) and Mg (2+) in sodium-calcium exchanger and in other Ca(2+)-binding proteins: magnesium, watchdog that blocks each turn if able. Adv Exp Med Biol 2013; 961:65-78; PMID:23224871; http://dx.doi.org/10.1007/978-1-4614-4756-6_7.
  • Callera GE, He Y, Yogi A, Montezano AC, Paravicini T, Yao G, Touyz RM. Regulation of the novel Mg2+ transporter transient receptor potential melastatin 7 (TRPM7) cation channel by bradykinin in vascular smooth muscle cells. J Hypertens 2009; 27:155-66; PMID:19145781; http://dx.doi.org/10.1097/HJH.0b013e3283190582.
  • Selvaraj S, Sun Y, Singh BB. TRPC channels and their implication in neurological diseases. CNS Neurol Disord Drug Targets 2010; 9:94-104; PMID:20201820; http://dx.doi.org/10.2174/187152710790966650.
  • Yamamoto S, Wajima T, Hara Y, Nishida M, Mori Y. Transient receptor potential channels in Alzheimer disease. Biochim Biophys Acta 2007; 1772:958-67; PMID:17490865; http://dx.doi.org/10.1016/j.bbadis.2007.03.006.
  • Simon F, Varela D, Cabello-Verrugio C. Oxidative stress-modulated TRPM ion channels in cell dysfunction and pathological conditions in humans. Cell Signal 2013; 25:1614-24; PMID:23602937; http://dx.doi.org/10.1016/j.cellsig.2013.03.023.
  • Reboreda A, Jimenez-Diaz L, Navarro-Lopez JD. TRP channels and neural persistent activity. Adv Exp Med Biol 2011; 704:595-613; PMID:21290318; http://dx.doi.org/10.1007/978-94-007-0265-3_32.
  • Pan Z, Yang H, Reinach PS. Transient receptor potential (TRP) gene superfamily encoding cation channels. Hum Genomics 2011; 5:108-16; PMID:21296744; http://dx.doi.org/10.1186/1479-7364-5-2-108.
  • Sukumaran P, Lof C, Kemppainen K, Kankaanpaa P, Pulli I, Nasman J, Viitanen T, Tornquist K. Canonical transient receptor potential channel 2 (TRPC2) as a major regulator of calcium homeostasis in rat thyroid FRTL-5 cells: importance of protein kinase C delta (PKCdelta) and stromal interaction molecule 2 (STIM2). J Biol Chem 2012; 287:44345-60; PMID:23144458; http://dx.doi.org/10.1074/jbc.M112.374348.
  • Liman ER. Trpm5. Handb Exp Pharmacol 2014; 222:489-502; PMID:24756718; http://dx.doi.org/10.1007/978-3-642-54215-2_19.
  • Mathar I, Jacobs G, Kecskes M, Menigoz A, Philippaert K, Vennekens R. Trpm4. Handb Exp Pharmacol 2014; 222:461-87; PMID:24756717; http://dx.doi.org/10.1007/978-3-642-54215-2_18.
  • Chubanov V, Gudermann T. Trpm6. Handb Exp Pharmacol 2014; 222:503-20; PMID:24756719; http://dx.doi.org/10.1007/978-3-642-54215-2_20.
  • Fleig A, Chubanov V. Trpm7. Handb Exp Pharmacol 2014; 222:521-46; PMID:24756720; http://dx.doi.org/10.1007/978-3-642-54215-2_21.
  • Irie S, Furukawa T. Trpm1. Handb Exp Pharmacol 2014; 222:387-402; PMID:24756714; http://dx.doi.org/10.1007/978-3-642-54215-2_15.
  • Oancea E, Wicks NL. TRPM1: new trends for an old TRP. Adv Exp Med Biol 2011; 704:135-45; PMID:21290293; http://dx.doi.org/10.1007/978-94-007-0265-3_7.
  • Xie YF, Macdonald JF, Jackson MF. TRPM2, calcium and neurodegenerative diseases. Int J Physiol Pathophysiol Pharmacol 2010; 2:95-103; PMID:21383889.
  • Fonfria E, Mattei C, Hill K, Brown JT, Randall A, Benham CD, Skaper SD, Campbell CA, Crook B, Murdock PR, et al. TRPM2 is elevated in the tMCAO stroke model, transcriptionally regulated, and functionally expressed in C13 microglia. J Recept Signal Transduct Res 2006; 26:179-98; PMID:16777714; http://dx.doi.org/10.1080/10799890600637522.
  • Earley S, Waldron BJ, Brayden JE. Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries. Circ Res 2004; 95:922-9; PMID:15472118; http://dx.doi.org/10.1161/01.RES.0000147311.54833.03.
  • Benemei S, Patacchini R, Trevisani M, Geppetti P. TRP channels. Curr Opin Pharmacol 2015; 22C:18-23; http://dx.doi.org/10.1016/j.coph.2015.02.006.
  • Runnels LW. TRPM6 and TRPM7: A Mul-TRP-PLIK-cation of channel functions. Curr Pharm Biotechnol 2011; 12:42-53; PMID:20932259; http://dx.doi.org/10.2174/138920111793937880.
  • Yamaguchi H, Matsushita M, Nairn AC, Kuriyan J. Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Mol Cell 2001; 7:1047-57; PMID:11389851; http://dx.doi.org/10.1016/S1097-2765(01)00256-8.
  • Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, Fleig A. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 2001; 411:590-5; PMID:11385574; http://dx.doi.org/10.1038/35079092.
  • Schmitz C, Dorovkov MV, Zhao X, Davenport BJ, Ryazanov AG, Perraud AL. The channel kinases TRPM6 and TRPM7 are functionally nonredundant. J Biol Chem 2005; 280:37763-71; PMID:16150690; http://dx.doi.org/10.1074/jbc.M509175200.
  • Matsushita M, Kozak JA, Shimizu Y, McLachlin DT, Yamaguchi H, Wei FY, Tomizawa K, Matsui H, Chait BT, Cahalan MD, et al. Channel function is dissociated from the intrinsic kinase activity and autophosphorylation of TRPM7/ChaK1. J Biol Chem 2005; 280:20793-803; PMID:15781465; http://dx.doi.org/10.1074/jbc.M413671200.
  • Dorovkov MV, Ryazanov AG. Phosphorylation of annexin I by TRPM7 channel-kinase. J Biol Chem 2004; 279:50643-6; PMID:15485879; http://dx.doi.org/10.1074/jbc.C400441200.
  • Dorovkov MV, Kostyukova AS, Ryazanov AG. Phosphorylation of annexin A1 by TRPM7 kinase: a switch regulating the induction of an α-helix. Biochemistry 2011; 50:2187-93; PMID:21280599; http://dx.doi.org/10.1021/bi101963h.
  • Clark K, Langeslag M, van Leeuwen B, Ran L, Ryazanov AG, Figdor CG, Moolenaar WH, Jalink K, van Leeuwen FN. TRPM7, a novel regulator of actomyosin contractility and cell adhesion. EMBO J 2006; 25:290-301; PMID:16407977; http://dx.doi.org/10.1038/sj.emboj.7600931.
  • Paravicini TM, Chubanov V, Gudermann T. TRPM7: a unique channel involved in magnesium homeostasis. Int J Biochem Cell Biol 2012; 44:1381-4; PMID:22634382; http://dx.doi.org/10.1016/j.biocel.2012.05.010.
  • Brandao K, Deason-Towne F, Zhao X, Perraud AL, Schmitz C. TRPM6 kinase activity regulates TRPM7 trafficking and inhibits cellular growth under hypomagnesic conditions. Cell Mol Life Sci 2014; 71:4853-67; PMID:24858416; http://dx.doi.org/10.1007/s00018-014-1647-7.
  • Runnels LW, Yue L, Clapham DE. The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat Cell Biol 2002; 4:329-36; PMID:11941371.
  • Takezawa R, Schmitz C, Demeuse P, Scharenberg AM, Penner R, Fleig A. Receptor-mediated regulation of the TRPM7 channel through its endogenous protein kinase domain. Proc Natl Acad Sci U S A 2004; 101:6009-14; PMID:15069188; http://dx.doi.org/10.1073/pnas.0307565101.
  • Kozak JA, Cahalan MD. MIC channels are inhibited by internal divalent cations but not ATP. Biophys J 2003; 84:922-7; PMID:12547774; http://dx.doi.org/10.1016/S0006-3495(03)74909-1.
  • Sun Y, Selvaraj S, Varma A, Derry S, Sahmoun AE, Singh BB. Increase in serum Ca2+/Mg2+ ratio promotes proliferation of prostate cancer cells by activating TRPM7 channels. J Biol Chem 2013; 288:255-63; PMID:23168410; http://dx.doi.org/10.1074/jbc.M112.393918.
  • Langeslag M, Clark K, Moolenaar WH, van Leeuwen FN, Jalink K. Activation of TRPM7 channels by phospholipase C-coupled receptor agonists. J Biol Chem 2007; 282:232-9; PMID:17095511; http://dx.doi.org/10.1074/jbc.M605300200.
  • Jiang J, Li M, Yue L. Potentiation of TRPM7 inward currents by protons. J Gen Physiol 2005; 126:137-50; PMID:16009728; http://dx.doi.org/10.1085/jgp.200409185.
  • Sun Y, Sukumaran P, Varma A, Derry S, Sahmoun AE, Singh BB. Cholesterol-induced activation of TRPM7 regulates cell proliferation, migration, and viability of human prostate cells. Biochim Biophys Acta 2014; 1843:1839-50; PMID:24769209; http://dx.doi.org/10.1016/j.bbamcr.2014.04.019.
  • Coombes E, Jiang J, Chu XP, Inoue K, Seeds J, Branigan D, Simon RP, Xiong ZG. Pathophysiologically relevant levels of hydrogen peroxide induce glutamate-independent neurodegeneration that involves activation of transient receptor potential melastatin 7 channels. Antioxid Redox Signal 2011; 14:1815-27; PMID:20812867; http://dx.doi.org/10.1089/ars.2010.3549.
  • Desai BN, Krapivinsky G, Navarro B, Krapivinsky L, Carter BC, Febvay S, Delling M, Penumaka A, Ramsey IS, Manasian Y, et al. Cleavage of TRPM7 releases the kinase domain from the ion channel and regulates its participation in Fas-induced apoptosis. Dev Cell 2012; 22:1149-62; PMID:22698280; http://dx.doi.org/10.1016/j.devcel.2012.04.006.
  • Krapivinsky G, Krapivinsky L, Manasian Y, Clapham DE. The TRPM7 chanzyme is cleaved to release a chromatin-modifying kinase. Cell 2014; 157:1061-72; PMID:24855944; http://dx.doi.org/10.1016/j.cell.2014.03.046.
  • Kaitsuka T, Katagiri C, Beesetty P, Nakamura K, Hourani S, Tomizawa K, Kozak JA, Matsushita M. Inactivation of TRPM7 kinase activity does not impair its channel function in mice. Sci Rep 2014; 4:5718; PMID:25030553; http://dx.doi.org/10.1038/srep05718.
  • Kunert-Keil C, Bisping F, Kruger J, Brinkmeier H. Tissue-specific expression of TRP channel genes in the mouse and its variation in three different mouse strains. BMC Genomics 2006; 7:159; PMID:16787531; http://dx.doi.org/10.1186/1471-2164-7-159.
  • Chen HC, Su LT, Gonzalez-Pagan O, Overton JD, Runnels LW. A key role for Mg(2+) in TRPM7s control of ROS levels during cell stress. Biochem J 2012; 445:441-8; PMID:22587440; http://dx.doi.org/10.1042/BJ20120248.
  • Brauchi S, Krapivinsky G, Krapivinsky L, Clapham DE. TRPM7 facilitates cholinergic vesicle fusion with the plasma membrane. Proc Natl Acad Sci U S A 2008; 105:8304-8; PMID:18539771; http://dx.doi.org/10.1073/pnas.0800881105.
  • Krapivinsky G, Mochida S, Krapivinsky L, Cibulsky SM, Clapham DE. The TRPM7 ion channel functions in cholinergic synaptic vesicles and affects transmitter release. Neuron 2006; 52:485-96; PMID:17088214; http://dx.doi.org/10.1016/j.neuron.2006.09.033.
  • Jin J, Desai BN, Navarro B, Donovan A, Andrews NC, Clapham DE. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science 2008; 322:756-60; PMID:18974357; http://dx.doi.org/10.1126/science.1163493.
  • Deason-Towne F, Perraud AL, Schmitz C. The Mg2+ transporter MagT1 partially rescues cell growth and Mg2+ uptake in cells lacking the channel-kinase TRPM7. FEBS Lett 2011; 585:2275-8; PMID:21627970; http://dx.doi.org/10.1016/j.febslet.2011.05.052.
  • Clark K, Middelbeek J, Lasonder E, Dulyaninova NG, Morrice NA, Ryazanov AG, Bresnick AR, Figdor CG, van Leeuwen FN. TRPM7 regulates myosin IIA filament stability and protein localization by heavy chain phosphorylation. J Mol Biol 2008; 378:790-803; PMID:18394644; http://dx.doi.org/10.1016/j.jmb.2008.02.057.
  • Hanano T, Hara Y, Shi J, Morita H, Umebayashi C, Mori E, Sumimoto H, Ito Y, Mori Y, Inoue R. Involvement of TRPM7 in cell growth as a spontaneously activated Ca2+ entry pathway in human retinoblastoma cells. J Pharmacol Sci 2004; 95:403-19; PMID:15286426; http://dx.doi.org/10.1254/jphs.FP0040273.
  • Turlova E, Bae CY, Deurloo M, Chen W, Barszczyk A, Horgen FD, Fleig A, Feng ZP, Sun HS. TRPM7 Regulates Axonal Outgrowth and Maturation of Primary Hippocampal Neurons. Mol Neurobiol 2014; PMID:25502295; http://dx.doi.org/10.1007/s12035-014-9032-y
  • Jaskova K, Pavlovicova M, Jurkovicova D. Calcium transporters and their role in the development of neuronal disease and neuronal damage. Gen Physiol Biophys 2012; 31:375-82; PMID:23255663; http://dx.doi.org/10.4149/gpb_2012_053.
  • Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol 1997; 82:291-5; PMID:9129943; http://dx.doi.org/10.1113/expphysiol.1997.sp004024.
  • Behl C. Amyloid β-protein toxicity and oxidative stress in Alzheimer disease. Cell Tissue Res 1997; 290:471-80; PMID:9369525; http://dx.doi.org/10.1007/s004410050955.
  • Yan MH, Wang X, Zhu X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic Biol Med 2013; 62:90-101; PMID:23200807; http://dx.doi.org/10.1016/j.freeradbiomed.2012.11.014.
  • Nunomura A, Moreira PI, Lee HG, Zhu X, Castellani RJ, Smith MA, Perry G. Neuronal death and survival under oxidative stress in Alzheimer and Parkinson diseases. CNS Neurol Disord Drug Targets 2007; 6:411-23; PMID:18220780; http://dx.doi.org/10.2174/187152707783399201.
  • Ureshino RP, Rocha KK, Lopes GS, Bincoletto C, Smaili SS. Calcium signaling alterations, oxidative stress, and autophagy in aging. Antioxid Redox Signal 2014; 21:123-37; PMID:24512092; http://dx.doi.org/10.1089/ars.2013.5777.
  • Barsukova AG, Bourdette D, Forte M. Mitochondrial calcium and its regulation in neurodegeneration induced by oxidative stress. Eur J Neurosci 2011; 34:437-47; PMID:21722208; http://dx.doi.org/10.1111/j.1460-9568.2011.07760.x.
  • Ermak G, Davies KJ. Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 2002; 38:713-21; PMID:11841831; http://dx.doi.org/10.1016/S0161-5890(01)00108-0.
  • Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, Tymianski M. A key role for TRPM7 channels in anoxic neuronal death. Cell 2003; 115:863-77; PMID:14697204; http://dx.doi.org/10.1016/S0092-8674(03)01017-1.
  • Park L, Wang G, Moore J, Girouard H, Zhou P, Anrather J, Iadecola C. The key role of transient receptor potential melastatin-2 channels in amyloid-β-induced neurovascular dysfunction. Nat Commun 2014; 5:5318; PMID:25351853; http://dx.doi.org/10.1038/ncomms6318.
  • Landman N, Jeong SY, Shin SY, Voronov SV, Serban G, Kang MS, Park MK, Di Paolo G, Chung S, Kim TW. Presenilin mutations linked to familial Alzheimer disease cause an imbalance in phosphatidylinositol 4,5-bisphosphate metabolism. Proc Natl Acad Sci U S A 2006; 103:19524-9; PMID:17158800; http://dx.doi.org/10.1073/pnas.0604954103.
  • Oh HG, Chun YS, Kim Y, Youn SH, Shin S, Park MK, Kim TW, Chung S. Modulation of transient receptor potential melastatin related 7 channel by presenilins. Dev Neurobiol 2012; 72:865-77; PMID:22102510; http://dx.doi.org/10.1002/dneu.22001.
  • Andrasi E, Igaz S, Molnar Z, Mako S. Disturbances of magnesium concentrations in various brain areas in Alzheimer disease. Magnes Res 2000; 13:189-96; PMID:11008926.
  • Starling AJ, Andre VM, Cepeda C, de Lima M, Chandler SH, Levine MS. Alterations in N-methyl-D-aspartate receptor sensitivity and magnesium blockade occur early in development in the R6/2 mouse model of Huntington's disease. J Neurosci Res 2005; 82:377-86; PMID:16211559; http://dx.doi.org/10.1002/jnr.20651.
  • Iotti S, Malucelli E. In vivo assessment of Mg2+ in human brain and skeletal muscle by 31P-MRS. Magnes Res 2008; 21:157-62; PMID:19009818.
  • Muroyama A, Inaka M, Matsushima H, Sugino H, Marunaka Y, Mitsumoto Y. Enhanced susceptibility to MPTP neurotoxicity in magnesium-deficient C57BL/6N mice. Neurosci Res 2009; 63:72-5; PMID:18977253; http://dx.doi.org/10.1016/j.neures.2008.09.009.
  • Hashimoto T, Nishi K, Nagasao J, Tsuji S, Oyanagi K. Magnesium exerts both preventive and ameliorating effects in an in vitro rat Parkinson disease model involving 1-methyl-4-phenylpyridinium (MPP+) toxicity in dopaminergic neurons. Brain Res 2008; 1197:143-51; PMID:18242592.
  • Oyanagi K, Kawakami E, Kikuchi-Horie K, Ohara K, Ogata K, Takahama S, Wada M, Kihira T, Yasui M. Magnesium deficiency over generations in rats with special references to the pathogenesis of the Parkinsonism-dementia complex and amyotrophic lateral sclerosis of Guam. Neuropathology 2006; 26:115-28; PMID:16708544; http://dx.doi.org/10.1111/j.1440-1789.2006.00672.x.
  • Decker AR, McNeill MS, Lambert AM, Overton JD, Chen YC, Lorca RA, Johnson NA, Brockerhoff SE, Mohapatra DP, MacArthur H, et al. Abnormal differentiation of dopaminergic neurons in zebrafish trpm7 mutant larvae impairs development of the motor pattern. Dev Biol 2014; 386:428-39; PMID:24291744; http://dx.doi.org/10.1016/j.ydbio.2013.11.015.
  • Cook NL, Heuvel Cvd, Vink R. Characterisation of TRPM channel mRNA levels in Parkinson disease. In: The 12th International Magnesium Symposium. Magnesium Research 2009; 22(3):188-9.
  • Shaw PJ. Molecular and cellular pathways of neurodegeneration in motor neurone disease. J Neurol Neurosurg Psychiatry 2005; 76:1046-57; PMID:16024877; http://dx.doi.org/10.1136/jnnp.2004.048652.
  • Gajdusek DC, Salazar AM. Amyotrophic lateral sclerosis and parkinsonian syndromes in high incidence among the Auyu and Jakai people of West New Guinea. Neurology 1982; 32:107-26; PMID:7198738; http://dx.doi.org/10.1212/WNL.32.2.107
  • Hirano A, Malamud N, Kurland LT. Parkinsonism-dementia complex, an endemic disease on the island of Guam. II. Pathological features. Brain 1961; 84:662-79; PMID:13907610; http://dx.doi.org/10.1093/brain/84.4.662.
  • Kimura K. [Studies on amyotrophic lateral sclerosis. I. Epidemiological, geomedical and genetic studies on amyotrophic lateral sclerosis and its allied diseases in Kii Peninsula, Japan]. Seishin Shinkeigaku zasshi 1963; 65:31-8.
  • Garruto RM. A commentary on neuronal degeneration and cell death in Guam ALS and PD: an evolutionary process of understanding. Curr Alzheimer Res 2006; 3:397-401; PMID:17017870; http://dx.doi.org/10.2174/156720506778249425.
  • Hermosura MC, Garruto RM. TRPM7 and TRPM2-Candidate susceptibility genes for Western Pacific ALS and PD? Biochim Biophys Acta 2007; 1772:822-35; PMID:17395433; http://dx.doi.org/10.1016/j.bbadis.2007.02.008.
  • Yase Y. The pathogenesis of amyotrophic lateral sclerosis. Lancet 1972; 2:292-6; PMID:4115029; http://dx.doi.org/10.1016/S0140-6736(72)92903-0.
  • Yanagihara R, Garruto RM, Gajdusek DC, Tomita A, Uchikawa T, Konagaya Y, Chen KM, Sobue I, Plato CC, Gibbs CJ, Jr. Calcium and vitamin D metabolism in Guamanian Chamorros with amyotrophic lateral sclerosis and parkinsonism-dementia. Ann Neurol 1984; 15:42-8; PMID:6546847; http://dx.doi.org/10.1002/ana.410150108.
  • Ozoguz A, Uyan O, Birdal G, Iskender C, Kartal E, Lahut S, Omur O, Agim ZS, Eken AG, Sen NE, et al. The distinct genetic pattern of ALS in Turkey and novel mutations. Neurobiol Aging 2015; 36:1764.e9-18.
  • Hara K, Kokubo Y, Ishiura H, Fukuda Y, Miyashita A, Kuwano R, Sasaki R, Goto J, Nishizawa M, Kuzuhara S, Tsuji S. TRPM7 is not associated with amyotrophic lateral sclerosis-parkinsonism dementia complex in the Kii peninsula of Japan. Am J Med Genet Part B Neuropsychiatric Genet 2010; 153B:310-3; PMID:19405049.
  • Frey D, Schneider C, Xu L, Borg J, Spooren W, Caroni P. Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. J Neurosci 2000; 20:2534-42; PMID:10729333.
  • Parnas M, Peters M, Dadon D, Lev S, Vertkin I, Slutsky I, Minke B. Carvacrol is a novel inhibitor of Drosophila TRPL and mammalian TRPM7 channels. Cell Calcium 2009; 45:300-9; PMID:19135721; http://dx.doi.org/10.1016/j.ceca.2008.11.009.
  • Yu H, Zhang ZL, Chen J, Pei A, Hua F, Qian X, He J, Liu CF, Xu X. Carvacrol, a food-additive, provides neuroprotection on focal cerebral ischemia/reperfusion injury in mice. PloS one 2012; 7:e33584; PMID:22438954; http://dx.doi.org/10.1371/journal.pone.0033584.
  • Chen W, Xu B, Xiao A, Liu L, Fang X, Liu R, Turlova E, Barszczyk A, Zhong X, Sun CL, Britto LR, Feng ZP, Sun HS. TRPM7 inhibitor carvacrol protects brain from neonatal hypoxic-ischemic injury. Mol Brain 2015; 8:11; PMID:25761704; http://dx.doi.org/10.1186/s13041-015-0102-5.
  • Sun HS, Jackson MF, Martin LJ, Jansen K, Teves L, Cui H, Kiyonaka S, Mori Y, Jones M, Forder JP, et al. Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nat Neurosci 2009; 12:1300-7; PMID:19734892; http://dx.doi.org/10.1038/nn.2395.
  • Chen W, Xu B, Xiao A, Liu L, Fang X, Liu R, Turlova E, Barszczyk A, Zhong X, Sun CL, et al. TRPM7 inhibitor carvacrol protects brain from neonatal hypoxic-ischemic injury. Mol Brain 2015; 8:11; PMID:25761704; http://dx.doi.org/10.1186/s13041-015-0102-5.
  • Bae CY, Sun HS. TRPM7 in cerebral ischemia and potential target for drug development in stroke. Acta Pharmacol Sin 2011; 32:725-33; PMID:21552293; http://dx.doi.org/10.1038/aps.2011.60.
  • Deason-Towne F, Perraud AL, Schmitz C. Identification of Ser/Thr phosphorylation sites in the C2-domain of phospholipase C gamma2 (PLCgamma2) using TRPM7-kinase. Cell Signal 2012; 24:2070-5; PMID:22759789; http://dx.doi.org/10.1016/j.cellsig.2012.06.015.
  • Zambrzycka A, Strosznajder RP, Strosznajder JB. Aggregated β amyloid peptide 1-40 decreases Ca2+- and cholinergic receptor-mediated phosphoinositide degradation by alteration of membrane and cytosolic phospholipase C in brain cortex. Neurochem Res 2000; 25:189-96; PMID:10786701; http://dx.doi.org/10.1023/A:1007511217525.
  • Ma T, Chen Y, Vingtdeux V, Zhao H, Viollet B, Marambaud P, Klann E. Inhibition of AMP-activated protein kinase signaling alleviates impairments in hippocampal synaptic plasticity induced by amyloid β. J Neurosci 2014; 34:12230-8; PMID:25186765; http://dx.doi.org/10.1523/JNEUROSCI.1694-14.2014.
  • Li X, Alafuzoff I, Soininen H, Winblad B, Pei JJ. Levels of mTOR and its downstream targets 4E-BP1, eEF2, and eEF2 kinase in relationships with tau in Alzheimer disease brain. FEBS J 2005; 272:4211-20; PMID:16098202; http://dx.doi.org/10.1111/j.1742-4658.2005.04833.x.
  • Perraud AL, Zhao X, Ryazanov AG, Schmitz C. The channel-kinase TRPM7 regulates phosphorylation of the translational factor eEF2 via eEF2-k. Cell Signal 2011; 23:586-93; PMID:21112387; http://dx.doi.org/10.1016/j.cellsig.2010.11.011.
  • Erten-Lyons D, Jacobson A, Kramer P, Grupe A, Kaye J. The FAS gene, brain volume, and disease progression in Alzheimer disease. Alzheimer Dement 2010; 6:118-24; http://dx.doi.org/10.1016/j.jalz.2009.05.663.
  • Cheng XL, Li MK. Effect of topiramate on apoptosis-related protein expression of hippocampus in model rats with Alzheimers disease. Eur Rev Med Pharmacol Sci 2014; 18:761-8; PMID:24706297.
  • Macchi B, Di Paola R, Marino-Merlo F, Felice MR, Cuzzocrea S, Mastino A. Inflammatory and cell death pathways in brain and peripheral blood in Parkinson disease. CNS Neurol Disord Drug Targets 2015; 14:313-24; PMID:25714978; http://dx.doi.org/10.2174/1871527314666150225124928.
  • Aarts MM, Tymianski M. TRPMs and neuronal cell death. Pflugers Archiv 2005; 451:243-9; PMID:16044308; http://dx.doi.org/10.1007/s00424-005-1439-x.
  • Oancea E, Vriens J, Brauchi S, Jun J, Splawski I, Clapham DE. TRPM1 forms ion channels associated with melanin content in melanocytes. Sci Signal 2009; 2:ra21; PMID:19436059.
  • Grimm C, Kraft R, Sauerbruch S, Schultz G, Harteneck C. Molecular and functional characterization of the melastatin-related cation channel TRPM3. J Biol Chem 2003; 278:21493-501; PMID:12672799; http://dx.doi.org/10.1074/jbc.M300945200.
  • Li M, Jiang J, Yue L. Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol 2006; 127:525-537; PMID:16636202; http://dx.doi.org/10.1085/jgp.200609502.
  • Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A. TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol 2003; 121:49-60; PMID:12508053; http://dx.doi.org/10.1085/jgp.20028740.
  • Heiner I, Eisfeld J, Halaszovich CR, Wehage E, Jungling E, Zitt C, Luckhoff A. Expression profile of the transient receptor potential (TRP) family in neutrophil granulocytes: evidence for currents through long TRP channel 2 induced by ADP-ribose and NAD. Biochem J 2003; 371:1045-53; PMID:12564954; http://dx.doi.org/10.1042/BJ20021975.
  • Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, et al. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 2001; 411:595-9; PMID:11385575; http://dx.doi.org/10.1038/35079100.
  • Sano Y, Inamura K, Miyake A, Mochizuki S, Yokoi H, Matsushime H, Furuichi K. Immunocyte Ca2+ influx system mediated by LTRPC2. Science 2001; 293:1327-30; PMID:11509734; http://dx.doi.org/10.1126/science.1062473.
  • McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 2002; 416:52-8; PMID:11882888; http://dx.doi.org/10.1038/nature719.
  • Hui K, Guo Y, Feng ZP. Biophysical properties of menthol-activated cold receptor TRPM8 channels. Biochem Biophys Res Commun 2005; 333:374-82; PMID:15950184; http://dx.doi.org/10.1016/j.bbrc.2005.05.123.
  • Launay P, Cheng H, Srivatsan S, Penner R, Fleig A, Kinet JP. TRPM4 regulates calcium oscillations after T cell activation. Science 2004; 306:1374-7; PMID:15550671; http://dx.doi.org/10.1126/science.1098845.
  • Nilius B, Prenen J, Janssens A, Owsianik G, Wang C, Zhu MX, Voets T. The selectivity filter of the cation channel TRPM4. J Biol Chem 2005; 280:22899-906; PMID:15845551; http://dx.doi.org/10.1074/jbc.M501686200.
  • Hofmann T, Chubanov V, Gudermann T, Montell C. TRPM5 is a voltage-modulated and Ca(2+)-activated monovalent selective cation channel. Curr Biol 2003; 13:1153-8; PMID:12842017; http://dx.doi.org/10.1016/S0960-9822(03)00431-7.