709
Views
6
CrossRef citations to date
0
Altmetric
Article Addendum

Ca2+-activated chloride channel activity during Ca2+ alternans in ventricular myocytes

& , M.D.
Pages 507-517 | Received 02 May 2016, Accepted 22 Jun 2016, Published online: 26 Jul 2016

References

  • Myles RC, Burton FL, Cobbe SM, Smith GL. The link between repolarisation alternans and ventricular arrhythmia: does the cellular phenomenon extend to the clinical problem? J Mol Cell Cardiol 2008; 45:1-10; PMID:18501925; http://dx.doi.org/10.1016/j.yjmcc.2008.03.024
  • Walker ML, Rosenbaum DS. Cellular alternans as mechanism of cardiac arrhythmogenesis. Heart Rhythm 2005; 2:1383-6; PMID:16360097; http://dx.doi.org/10.1016/j.hrthm.2005.09.009
  • Franz MR, Jamal SM, Narayan SM. The role of action potential alternans in the initiation of atrial fibrillation in humans: a review and future directions. Europace 2012; 14(Suppl 5):v58-v64; PMID:23104916; http://dx.doi.org/10.1093/europace/eus273
  • Walker ML, Rosenbaum DS. Repolarization alternans: implications for the mechanism and prevention of sudden cardiac death. Cardiovasc Res 2003; 57:599-614; PMID:12618222; http://dx.doi.org/10.1016/S0008-6363(02)00737-X
  • Ter Keurs HE, Boyden PA. Calcium and arrhythmogenesis. Physiol Rev 2007; 87:457-506; PMID:17429038; http://dx.doi.org/10.1152/physrev.00011.2006
  • Verrier RL, Nieminen T. T-wave alternans as a therapeutic marker for antiarrhythmic agents. J Cardiovasc Pharmacol 2010; 55:544-54; PMID:20555232; http://dx.doi.org/10.1097/FJC.0b013e3181d6b781
  • Verrier RL, Klingenheben T, Malik M, El-Sherif N, Exner DV, Hohnloser SH, Ikeda T, Martinez JP, Narayan SM, Nieminen T, et al. Microvolt T-wave alternans testing has a role in arrhythmia risk stratification. J Am Coll Cardiol 2012; 59:1572-3; PMID:22516453; http://dx.doi.org/10.1016/j.jacc.2012.03.008
  • Wan X, Cutler M, Song Z, Karma A, Matsuda T, Baba A, Rosenbaum DS. New experimental evidence for mechanism of arrhythmogenic membrane potential alternans based on balance of electrogenic INCX/ICa currents. Heart Rhythm 2012; 9:1698-705; PMID:22721857; http://dx.doi.org/10.1016/j.hrthm.2012.06.031
  • Shiferaw Y, Sato D, Karma A. Coupled dynamics of voltage and calcium in paced cardiac cells. Phys Rev E Stat Nonlin Soft Matter Phys 2005; 71:021903; PMID:15783348; http://dx.doi.org/10.1103/PhysRevE.71.021903
  • Guo D, Zhao X, Wu Y, Liu T, Kowey PR, Yan GX. L-type calcium current reactivation contributes to arrhythmogenesis associated with action potential triangulation. J Cardiovasc Electrophysiol 2007; 18:196-203; PMID:17212595; http://dx.doi.org/10.1111/j.1540-8167.2006.00698.x
  • Guo D, Young L, Patel C, Jiao Z, Wu Y, Liu T, Kowey PR, Yan GX. Calcium-activated chloride current contributes to action potential alternations in left ventricular hypertrophy rabbit. Am J Physiol Heart Circ Physiol 2008; 295:H97-H104; PMID:18441200; http://dx.doi.org/10.1152/ajpheart.01032.2007
  • Kanaporis G, Blatter LA. Calcium-activated chloride current determines action potential morphology during calcium alternans in atrial myocytes. J Physiol 2016; 594:699-714; PMID:26662365; http://dx.doi.org/10.1113/JP271887
  • Hsueh CH, Chang PC, Hsieh YC, Reher T, Chen PS, Lin SF. Proarrhythmic effect of blocking the small conductance calcium activated potassium channel in isolated canine left atrium. Heart Rhythm 2013; 10:891-8; PMID:23376397; http://dx.doi.org/10.1016/j.hrthm.2013.01.033
  • Weiss JN, Nivala M, Garfinkel A, Qu Z. Alternans and arrhythmias: from cell to heart. Circ Res 2011; 108:98-112; PMID:21212392; http://dx.doi.org/10.1161/CIRCRESAHA.110.223586
  • Kanaporis G, Blatter LA. The mechanisms of calcium cycling and action potential dynamics in cardiac alternans. Circ Res 2015; 116:846-56; PMID:25532796; http://dx.doi.org/10.1161/CIRCRESAHA.116.305404
  • Chudin E, Goldhaber J, Garfinkel A, Weiss J, Kogan B. Intracellular Ca2+ dynamics and the stability of ventricular tachycardia. Biophys J 1999; 77:2930-41; PMID:10585917; http://dx.doi.org/10.1016/S0006-3495(99)77126-2
  • Goldhaber JI, Xie LH, Duong T, Motter C, Khuu K, Weiss JN. Action potential duration restitution and alternans in rabbit ventricular myocytes: the key role of intracellular calcium cycling. Circ Res 2005; 96:459-66; PMID:15662034; http://dx.doi.org/10.1161/01.RES.0000156891.66893.83
  • Edwards JN, Blatter LA. Cardiac alternans and intracellular calcium cycling. Clin Exp Pharmacol Physiol 2014; 41:524-32; PMID:25040398; http://dx.doi.org/10.1111/1440-1681.12231
  • Weiss JN, Karma A, Shiferaw Y, Chen PS, Garfinkel A, Qu Z. From pulsus to pulseless: the saga of cardiac alternans. Circ Res 2006; 98:1244-53; PMID:16728670; http://dx.doi.org/10.1161/01.RES.0000224540.97431.f0
  • Qu Z, Nivala M, Weiss JN. Calcium alternans in cardiac myocytes: order from disorder. J Mol Cell Cardiol 2013; 58:100-9; PMID:23104004; http://dx.doi.org/10.1016/j.yjmcc.2012.10.007
  • Pruvot EJ, Katra RP, Rosenbaum DS, Laurita KR. Role of calcium cycling versus restitution in the mechanism of repolarization alternans. Circ Res 2004; 94:1083-90; PMID:15016735; http://dx.doi.org/10.1161/01.RES.0000125629.72053.95
  • Lee HC, Mohabir R, Smith N, Franz MR, Clusin WT. Effect of ischemia on calcium-dependent fluorescence transients in rabbit hearts containing indo 1. Correlation with monophasic action potentials and contraction. Circulation 1988; 78:1047-59; PMID:2844438; http://dx.doi.org/10.1161/01.CIR.78.4.1047
  • Huser J, Wang YG, Sheehan KA, Cifuentes F, Lipsius SL, Blatter LA. Functional coupling between glycolysis and excitation-contraction coupling underlies alternans in cat heart cells. J Physiol 2000; 524(Pt 3):795-806; PMID:10790159; http://dx.doi.org/10.1111/j.1469-7793.2000.00795.x
  • Jordan PN, Christini DJ. Characterizing the contribution of voltage- and calcium-dependent coupling to action potential stability: implications for repolarization alternans. Am J Physiol Heart Circ Physiol 2007; 293:H2109-18; PMID:17586611; http://dx.doi.org/10.1152/ajpheart.00609.2007
  • Lugo CA, Cantalapiedra IR, Penaranda A, Hove-Madsen L, Echebarria B. Are SR Ca content fluctuations or SR refractoriness the key to atrial cardiac alternans?: insights from a human atrial model. Am J Physiol Heart Circ Physiol 2014; 306:H1540-52; PMID:24610921; http://dx.doi.org/10.1152/ajpheart.00515.2013
  • Jordan PN, Christini DJ. Action potential morphology influences intracellular calcium handling stability and the occurrence of alternans. Biophys J 2006; 90:672-80; PMID:16239324; http://dx.doi.org/10.1529/biophysj.105.071340
  • Diaz ME, O'Neill SC, Eisner DA. Sarcoplasmic reticulum calcium content fluctuation is the key to cardiac alternans. Circ Res 2004; 94:650-6; PMID:14752033; http://dx.doi.org/10.1161/01.RES.0000119923.64774.72
  • Shkryl VM, Maxwell JT, Domeier TL, Blatter LA. Refractoriness of sarcoplasmic reticulum Ca2+ release determines Ca2+ alternans in atrial myocytes. Am J Physiol Heart Circ Physiol 2012; 302:H2310-20; PMID:22467301; http://dx.doi.org/10.1152/ajpheart.00079.2012
  • Nivala M, Qu Z. Calcium alternans in a couplon network model of ventricular myocytes: role of sarcoplasmic reticulum load. Am J Physiol Heart Circ Physiol 2012; 303:H341-52; PMID:22661509; http://dx.doi.org/10.1152/ajpheart.00302.2012
  • Eisner DA, Li Y, O'Neill SC. Alternans of intracellular calcium: mechanism and significance. Heart Rhythm 2006; 3:743-5; PMID:16731482; http://dx.doi.org/10.1016/j.hrthm.2005.12.020
  • Picht E, DeSantiago J, Blatter LA, Bers DM. Cardiac alternans do not rely on diastolic sarcoplasmic reticulum calcium content fluctuations. Circ Res 2006; 99:740-8; PMID:16946134; http://dx.doi.org/10.1161/01.RES.0000244002.88813.91
  • Wang L, Myles RC, De Jesus NM, Ohlendorf AK, Bers DM, Ripplinger CM. Optical mapping of sarcoplasmic reticulum Ca2+ in the intact heart: ryanodine receptor refractoriness during alternans and fibrillation. Circ Res 2014; 114:1410-21; PMID:24568740; http://dx.doi.org/10.1161/CIRCRESAHA.114.302505
  • Kornyeyev D, Petrosky AD, Zepeda B, Ferreiro M, Knollmann B, Escobar AL. Calsequestrin 2 deletion shortens the refractoriness of Ca2+ release and reduces rate-dependent Ca2+-alternans in intact mouse hearts. J Mol Cell Cardiol 2012; 52:21-31; PMID:21983287; http://dx.doi.org/10.1016/j.yjmcc.2011.09.020
  • Llach A, Molina CE, Fernandes J, Padro J, Cinca J, Hove-Madsen L. Sarcoplasmic reticulum and L-type Ca(2)(+) channel activity regulate the beat-to-beat stability of calcium handling in human atrial myocytes. J Physiol 2011; 589:3247-62; PMID:21521767; http://dx.doi.org/10.1113/jphysiol.2010.197715
  • Luzza F, Oreto G. Verapamil-induced electrical and cycle length alternans during supraventricular tachycardia: what is the mechanism? J Cardiovasc Electrophysiol 2003; 14:323-4; PMID:12716120; http://dx.doi.org/10.1046/j.1540-8167.2003.02463.x
  • Li Y, Diaz ME, Eisner DA, O'Neill S. The effects of membrane potential, SR Ca2+ content and RyR responsiveness on systolic Ca2+ alternans in rat ventricular myocytes. J Physiol 2009; 587:1283-92; PMID:19153161; http://dx.doi.org/10.1113/jphysiol.2008.164368
  • Tuteja D, Xu D, Timofeyev V, Lu L, Sharma D, Zhang Z, Xu Y, Nie L, Vazquez AE, Young JN, et al. Differential expression of small-conductance Ca2+-activated K+ channels SK1, SK2, and SK3 in mouse atrial and ventricular myocytes. Am J Physiol Heart Circ Physiol 2005; 289:H2714-23; PMID:16055520; http://dx.doi.org/10.1152/ajpheart.00534.2005
  • Simard C, Hof T, Keddache Z, Launay P, Guinamard R. The TRPM4 non-selective cation channel contributes to the mammalian atrial action potential. J Mol Cell Cardiol 2013; 59:11-9; PMID:23416167; http://dx.doi.org/10.1016/j.yjmcc.2013.01.019
  • Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP. TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 2002; 109:397-407; PMID:12015988; http://dx.doi.org/10.1016/S0092-8674(02)00719-5
  • Prawitt D, Monteilh-Zoller MK, Brixel L, Spangenberg C, Zabel B, Fleig A, Penner R. TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i. Proc Natl Acad Sci U S A 2003; 100:15166-71; PMID:14634208; http://dx.doi.org/10.1073/pnas.2334624100
  • Szigeti G, Rusznak Z, Kovacs L, Papp Z. Calcium-activated transient membrane currents are carried mainly by chloride ions in isolated atrial, ventricular and Purkinje cells of rabbit heart. Exp Physiol 1998; 83:137-53; PMID:9568474; http://dx.doi.org/10.1113/expphysiol.1998.sp004097
  • Oh U, Jung J. Cellular functions of TMEM16/anoctamin. Pflugers Arch 2016; 468:443-53; PMID:26811235; http://dx.doi.org/10.1007/s00424-016-1790-0
  • Xu Y, Dong PH, Zhang Z, Ahmmed GU, Chiamvimonvat N. Presence of a calcium-activated chloride current in mouse ventricular myocytes. Am J Physiol Heart Circ Physiol 2002; 283:H302-14; PMID:12063303; http://dx.doi.org/10.1152/ajpheart.00044.2002
  • Zygmunt AC, Gibbons WR. Properties of the calcium-activated chloride current in heart. J Gen Physiol 1992; 99:391-414; PMID:1375275; http://dx.doi.org/10.1085/jgp.99.3.391
  • Trafford AW, Diaz ME, Eisner DA. Ca-activated chloride current and Na-Ca exchange have different timecourses during sarcoplasmic reticulum Ca release in ferret ventricular myocytes. Pflugers Arch 1998; 435:743-5; PMID:9479029; http://dx.doi.org/10.1007/s004240050577
  • Verkerk AO, Veldkamp MW, Bouman LN, van Ginneken AC. Calcium-activated Cl− current contributes to delayed afterdepolarizations in single Purkinje and ventricular myocytes. Circulation 2000; 101:2639-44; PMID:10840017; http://dx.doi.org/10.1161/01.CIR.101.22.2639
  • Zygmunt AC. Intracellular calcium activates a chloride current in canine ventricular myocytes. Am J Physiol 1994; 267:H1984-95; PMID:7977830
  • Li GR, Sun H, To J, Tse HF, Lau CP. Demonstration of calcium-activated transient outward chloride current and delayed rectifier potassium currents in Swine atrial myocytes. J Mol Cell Cardiol 2004; 36:495-504; PMID:15081309; http://dx.doi.org/10.1016/j.yjmcc.2004.01.005
  • Li GR, Feng J, Wang Z, Fermini B, Nattel S. Comparative mechanisms of 4-aminopyridine-resistant Ito in human and rabbit atrial myocytes. Am J Physiol 1995; 269:H463-72; PMID:7653610
  • Tseng GN, Hoffman BF. Two components of transient outward current in canine ventricular myocytes. Circ Res 1989; 64:633-47; PMID:2539269; http://dx.doi.org/10.1161/01.RES.64.4.633
  • Duan DD. Phenomics of cardiac chloride channels. Compr Physiol 2013; 3:667-92; PMID:23720326
  • O'Driscoll KE, Hatton WJ, Burkin HR, Leblanc N, Britton FC. Expression, localization, and functional properties of Bestrophin 3 channel isolated from mouse heart. Am J Physiol Cell Physiol 2008; 295:C1610-24; PMID:18945938; http://dx.doi.org/10.1152/ajpcell.00461.2008
  • O'Driscoll KE, Leblanc N, Hatton WJ, Britton FC. Functional properties of murine bestrophin 1 channel. Biochem Biophys Res Commun 2009; 384:476-81; PMID:19426717; http://dx.doi.org/10.1016/j.bbrc.2009.05.008
  • Ye Z, Wu MM, Wang CY, Li YC, Yu CJ, Gong YF, Zhang J, Wang QS, Song BL, Yu K, et al. Characterization of Cardiac Anoctamin1 Ca -activated Chloride Channels and Functional Role in Ischemia-Induced Arrhythmias. J Cell Physiol 2015; 230(2): 337-346.
  • Han X, Ferrier GR. Transient inward current is conducted through two types of channels in cardiac Purkinje fibres. J Mol Cell Cardiol 1996; 28:2069-84; PMID:8930803; http://dx.doi.org/10.1006/jmcc.1996.0200
  • Zygmunt AC, Goodrow RJ, Weigel CM. INaCa and ICl(Ca) contribute to isoproterenol-induced delayed after depolarizations in midmyocardial cells. Am J Physiol 1998; 275:H1979-92; PMID:9843796
  • Pu JL, Li N, Ma KJ, Wang HT, Teng SY, Makielski JC. [Observation of functional remodeling of Ca2+-activated Cl− channel in pacing-induced canine failing heart]. Zhonghua Xin Xue Guan Bing Za Zhi 2006; 34:797-800; PMID:17217686
  • Sah R, Ramirez RJ, Oudit GY, Gidrewicz D, Trivieri MG, Zobel C, Backx PH. Regulation of cardiac excitation-contraction coupling by action potential repolarization: role of the transient outward potassium current (Ito). J Physiol 2003; 546:5-18; PMID:12509475; http://dx.doi.org/10.1113/jphysiol.2002.026468
  • Sah R, Ramirez RJ, Backx PH. Modulation of Ca2+ release in cardiac myocytes by changes in repolarization rate: role of phase-1 action potential repolarization in excitation-contraction coupling. Circ Res 2002; 90:165-73; PMID:11834709; http://dx.doi.org/10.1161/hh0202.103315
  • Freeman LC, Pacioretty LM, Moise NS, Kass RS, Gilmour RF, Jr. Decreased density of Ito in left ventricular myocytes from German shepherd dogs with inherited arrhythmias. J Cardiovasc Electrophysiol 1997; 8:872-83; PMID:9261713; http://dx.doi.org/10.1111/j.1540-8167.1997.tb00848.x
  • Linz KW, Meyer R. Profile and kinetics of L-type calcium current during the cardiac ventricular action potential compared in guinea-pigs, rats and rabbits. Pflugers Arch 2000; 439:588-99; PMID:10764219; http://dx.doi.org/10.1007/s004249900212
  • Bassani RA, Altamirano J, Puglisi JL, Bers DM. Action potential duration determines sarcoplasmic reticulum Ca2+ reloading in mammalian ventricular myocytes. J Physiol 2004; 559:593-609; PMID:15243136; http://dx.doi.org/10.1113/jphysiol.2004.067959
  • Sah R, Ramirez RJ, Kaprielian R, Backx PH. Alterations in action potential profile enhance excitation-contraction coupling in rat cardiac myocytes. J Physiol 2001; 533:201-14; PMID:11351028; http://dx.doi.org/10.1111/j.1469-7793.2001.0201b.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.