1,245
Views
8
CrossRef citations to date
0
Altmetric
Review

T-type Ca2+ channels and autoregulation of local blood flow

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 183-195 | Received 30 Sep 2016, Accepted 07 Dec 2016, Published online: 20 Jan 2017

Reference

  • Shipley RE, Study RS. Changes in renal blood flow, extraction of inulin, glomerular filtration rate, tissue pressure and urine flow with acute alterations of renal artery blood pressure. Am J Physiol 1951; 167:676-88.
  • Lassen NA, Christensen MS. Physiology of cerebral blood flow. Br J Anaesth 1976; 48:719-34; PMID:7284
  • Sorensen CM, Leyssac PP, Skott O, Holstein-Rathlou NH. NO mediates downregulation of RBF after a prolonged reduction of renal perfusion pressure in SHR. Am J Physiol Regul Integr Comp Physiol 2003; 285:R329-R38; PMID:12714352; https://doi.org/10.1152/ajpregu.00063.2003
  • Bayliss WM. On the local reactions of the arterial wall to changes of internal pressure. J Physiol 1902; 28:220-31; PMID:16992618
  • Navar LG. Renal autoregulation: perspectives from whole kidney and single nephron studies. Am J Physiol 1978; 234:F357-F70; PMID:347950
  • Laird JD, Breuls PN, van der Meer P, Spaan JA. Can a single vasodilator be responsible for both coronary autoregulation and metabolic vasodilation? Basic Res Cardiol 1981; 76:354-8; PMID:7283936
  • Gustafsson F, Holstein-Rathlou NH. Conducted vasomotor responses in arterioles: characteristics, mechanisms and physiological significance. Acta Physiol Scand 1999; 167:11-21; PMID:10519972; https://doi.org/10.1046/j.1365-201x.1999.00603.x
  • Segal SS, Duling BR. Propagation of vasodilation in resistance vessels of the hamster: development and review of a working hypothesis. Circ Res 1987; 61:II20-II5; PMID:3664984
  • Fujii K, Heistad DD, Faraci FM. Flow-mediated dilatation of the basilar artery in vivo. Circ Res 1991; 69:697-705; PMID:1873864
  • Koller A, Kaley G. Endothelium regulates skeletal muscle microcirculation by a blood flow velocity-sensing mechanism. Am J Physiol 1990; 258:H916-H20; PMID:2316704
  • Salomonsson M, Arendshorst WJ. Calcium recruitment in renal vasculature: NE effects on blood flow and cytosolic calcium concentration. Am J Physiol 1999; 276:F700-F10; PMID:10330052
  • Somlyo AP, Somlyo AV. Ultrastructural aspects of activation and contraction of vascular smooth muscle. Fed Proc 1976; 35:1288-93; PMID:770202
  • van BC, Farinas BR, Gerba P, McNaughton ED. Excitation-contraction coupling in rabbit aorta studied by the lanthanum method for measuring cellular calcium influx. Circ Res 1972; 30:44-54; PMID:5007527
  • Hill-Eubanks DC, Werner ME, Heppner TJ, Nelson MT. Calcium signaling in smooth muscle. Cold Spring Harb Perspect Biol 2011; 3:a004549; PMID:21709182
  • Nelson MT, Patlak JB, Worley JF, Standen NB. Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol 1990; 259:C3-18; PMID:2164782
  • Earley S, Brayden JE. Transient receptor potential channels and vascular function. Clin Sci (Lond) 2010; 119:19-36; PMID:20370719; https://doi.org/10.1042/CS20090641
  • Dietrich A, Kalwa H, Gudermann T. TRPC channels in vascular cell function. Thromb Haemost 2010; 103:262-70; PMID:20126834; https://doi.org/10.1160/TH09-08-0517
  • Navar LG, Champion WJ, Thomas CE. Effects of calcium channel blockade on renal vascular resistance responses to changes in perfusion pressure and angiotensin-converting enzyme inhibition in dogs. Circ Res 1986; 58:874-81; PMID:3013463
  • McCall D. Excitation-contraction coupling in cardiac and vascular smooth muscle: modification by calcium-entry blockade. Circulation 1987; 75:V3-14; PMID:2436829
  • Hansen PB, Jensen BL, Andreasen D, Skott O. Differential expression of T- and L-type voltage-dependent calcium channels in renal resistance vessels. Circ Res 2001; 89:630-8; PMID:11577029
  • Sten-Knudsen O. Stoftransport, membranpotentialer og elektriske impulser over biologiske membraner [Substance transport, membrane potentials and electrical impulses across biological membranes]. Copenhagen: Akademisk Forlag 1995.
  • Nelson MT, Quayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 1995; 268:C799-C822; PMID:7733230
  • Jackson WF. Potassium channels in the peripheral microcirculation. Microcirculation 2005; 12:113-27; PMID:15804979; https://doi.org/10.1080/10739680590896072
  • Buhrle CP, Nobiling R, Mannek E, Schneider D, Hackenthal E, Taugner R. The afferent glomerular arteriole: immunocytochemical and electrophysiological investigations. J Cardiovasc Pharmacol 1984; 6 Suppl 2:S383-S93; PMID:6206347
  • Jensen LJ, Holstein-Rathlou NH. Is there a role for T-type Ca2+ channels in regulation of vasomotor tone in mesenteric arterioles? Can J Physiol Pharmacol 2009; 87:8-20; PMID:19142211; https://doi.org/10.1139/Y08-101
  • Sorensen CM, Braunstein TH, Holstein-Rathlou NH, Salomonsson M. Role of vascular potassium channels in the regulation of renal hemodynamics. Am J Physiol Renal Physiol 2012; 302:F505-F18; PMID:22169005
  • Ko EA, Han J, Jung ID, Park WS. Physiological roles of K+ channels in vascular smooth muscle cells. J Smooth Muscle Res 2008; 44:65-81; PMID:18552454
  • Matchkov VV, Secher Dam V, Bodtkjer DM, Aalkjaer C. Transport and function of chloride in vascular smooth muscles. J Vasc Res 2013; 50:69-87; PMID:23172353; https://doi.org/10.1159/000345242
  • Nelson MT, Conway MA, Knot HJ, Brayden JE. Chloride channel blockers inhibit myogenic tone in rat cerebral arteries. J Physiol 1997; 502(Pt 2):259-64; PMID:9263908
  • Earley S, Waldron BJ, Brayden JE. Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries. Circ Res 2004; 95:922-9; PMID:15472118; https://doi.org/10.1161/01.RES.0000147311.54833.03
  • Earley S, Straub SV, Brayden JE. Protein kinase C regulates vascular myogenic tone through activation of TRPM4. Am J Physiol Heart Circ Physiol 2007; 292:H2613-H22; PMID:17293488; https://doi.org/10.1152/ajpheart.01286.2006
  • Gonzales AL, Garcia ZI, Amberg GC, Earley S. Pharmacological inhibition of TRPM4 hyperpolarizes vascular smooth muscle. Am J Physiol Cell Physiol 2010; 299:C1195-C202; PMID:20826763; https://doi.org/10.1152/ajpcell.00269.2010
  • Welsh DG, Morielli AD, Nelson MT, Brayden JE. Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ Res 2002; 90:248-50; PMID:11861411
  • Catterall WA, Striessnig J, Snutch TP, Perez-Reyes E. International Union of Pharmacology. XL. Compendium of voltage-gated ion channels: calcium channels. Pharmacol Rev 2003; 55:579-81; PMID:14657414; https://doi.org/10.1124/pr.55.4.8
  • Perez-Reyes E. Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 2003; 83:117-61; PMID:12506128; https://doi.org/10.1152/physrev.00018.2002
  • McDonald TF, Pelzer S, Trautwein W, Pelzer DJ. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev 1994; 74:365-507; PMID:8171118
  • Moosmang S, Schulla V, Welling A, Feil R, Feil S, Wegener JW, Hofmann F, Klugbauer N. Dominant role of smooth muscle L-type calcium channel Cav1.2 for blood pressure regulation. EMBO J 2003; 22:6027-34; PMID:14609949; https://doi.org/10.1093/emboj/cdg583
  • Smirnov SV, Aaronson PI. Ca2+ currents in single myocytes from human mesenteric arteries: evidence for a physiological role of L-type channels. J Physiol 1992; 457:455-75; PMID:1338463
  • De Weille JR, Schweitz H, Maes P, Tartar A, Lazdunski M. Calciseptine, a peptide isolated from black mamba venom, is a specific blocker of the L-type calcium channel. Proc Natl Acad Sci U S A 1991; 88:2437-40; PMID:1848702
  • Jensen LJ, Salomonsson M, Jensen BL, Holstein-Rathlou NH. Depolarization-induced calcium influx in rat mesenteric small arterioles is mediated exclusively via mibefradil-sensitive calcium channels. Br J Pharmacol 2004; 142:709-18; PMID:15172957; https://doi.org/10.1038/sj.bjp.0705841
  • Lyford GL, Strege PR, Shepard A, Ou Y, Ermilov L, Miller SM, Gibbons SJ, Rae JL, Szurszewski JH, Farrugia G. alpha(1C) (Ca(V)1.2) L-type calcium channel mediates mechanosensitive calcium regulation. Am J Physiol Cell Physiol 2002; 283:C1001-8; PMID:12176756; https://doi.org/10.1152/ajpcell.00140.2002
  • Hansen PB, Jensen BL, Andreasen D, Friis UG, Skott O. Vascular smooth muscle cells express the alpha(1A) subunit of a P-/Q-type voltage-dependent Ca(2+)Channel, and It is functionally important in renal afferent arterioles. Circ Res 2000; 87:896-902; PMID:11073885
  • Mangoni ME, Traboulsie A, Leoni AL, Couette B, Marger L, Le Quang K, Kupfer E, Cohen-Solal A, Vilar J, Shin HS, et al. Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3.1/alpha1G T-type calcium channels. Circ Res 2006; 98:1422-30; PMID:16690884; https://doi.org/10.1161/01.RES.0000225862.14314.49
  • Chiang CS, Huang CH, Chieng H, Chang YT, Chang D, Chen JJ, Chen YC, Chen YH, Shin HS, Campbell KP, et al. The Ca(v)3.2 T-type Ca(2+) channel is required for pressure overload-induced cardiac hypertrophy in mice. Circ Res 2009; 104:522-30; PMID:19122177; https://doi.org/10.1161/CIRCRESAHA.108.184051
  • Nakayama H, Bodi I, Correll RN, Chen X, Lorenz J, Houser SR, Robbins J, Schwartz A, Molkentin JD. alpha1G-dependent T-type Ca2+ current antagonizes cardiac hypertrophy through a NOS3-dependent mechanism in mice. J Clin Invest 2009; 119:3787-96; PMID:19920353; https://doi.org/10.1172/JCI39724
  • Bjorling K, Morita H, Olsen MF, Prodan A, Hansen PB, Lory P, Holstein-Rathlou NH, Jensen LJ. Myogenic tone is impaired at low arterial pressure in mice deficient in the low-voltage-activated CaV 3.1 T-type Ca(2+) channel. Acta Physiol (Oxf) 2013; 207:709-20; PMID:23356724; https://doi.org/10.1111/apha.12066
  • Blanks AM, Zhao ZH, Shmygol A, Bru-Mercier G, Astle S, Thornton S. Characterization of the molecular and electrophysiological properties of the T-type calcium channel in human myometrium. J Physiol 2007; 581:915-26; PMID:17446221; https://doi.org/10.1113/jphysiol.2007.132126
  • Braunstein TH, Inoue R, Cribbs L, Oike M, Ito Y, Holstein-Rathlou NH, Jensen LJ. The role of L- and T-type calcium channels in local and remote calcium responses in rat mesenteric terminal arterioles. J Vasc Res 2009; 46:138-51; PMID:18765948; https://doi.org/10.1159/000151767
  • Kuo IY, Ellis A, Seymour VA, Sandow SL, Hill CE. Dihydropyridine-insensitive calcium currents contribute to function of small cerebral arteries. J Cereb Blood Flow Metab 2010; 30:1226-39; PMID:20125181; https://doi.org/10.1038/jcbfm.2010.11
  • Mikkelsen MF, Bjorling K, Jensen LJ. Age-dependent impact of CaV 3.2 T-type calcium channel deletion on myogenic tone and flow-mediated vasodilatation in small arteries. J Physiol 2016; 594(20):5881-5898; https://doi.org/10.1113/JP271470
  • Poulsen CB, Al-Mashhadi RH, Cribbs LL, Skott O, Hansen PB. T-type voltage-gated calcium channels regulate the tone of mouse efferent arterioles. Kidney Int 2011; 79:443-51; PMID:21068717; https://doi.org/10.1038/ki.2010.429
  • Svenningsen P, Andersen K, Thuesen AD, Shin HS, Vanhoutte PM, Skott O, Jensen BL, Hill C, Hansen PB. T-type Ca(2+) channels facilitate NO-formation, vasodilatation and NO-mediated modulation of blood pressure. Pflugers Arch 2014; 466:2205-14; PMID:24627154; https://doi.org/10.1007/s00424-014-1492-4
  • Harraz OF, Visser F, Brett SE, Goldman D, Zechariah A, Hashad AM, Menon BK, Watson T, Starreveld Y, Welsh DG. CaV1.2/CaV3.x channels mediate divergent vasomotor responses in human cerebral arteries. J Gen Physiol 2015; 145:405-18; PMID:25918359; https://doi.org/10.1085/jgp.201511361
  • Basson MD, Zeng B, Downey C, Sirivelu MP, Tepe JJ. Increased extracellular pressure stimulates tumor proliferation by a mechanosensitive calcium channel and PKC-beta. Mol Oncol 2015; 9:513-26; PMID:25454347; https://doi.org/10.1016/j.molonc.2014.10.008
  • Shin JB, Martinez-Salgado C, Heppenstall PA, Lewin GR. A T-type calcium channel required for normal function of a mammalian mechanoreceptor. Nat Neurosci 2003; 6:724-30; PMID:12808460; https://doi.org/10.1038/nn1076
  • Dubreuil AS, Boukhaddaoui H, Desmadryl G, Martinez-Salgado C, Moshourab R, Lewin GR, Carroll P, Valmier J, Scamps F. Role of T-type calcium current in identified D-hair mechanoreceptor neurons studied in vitro. J Neurosci 2004; 24:8480-4; PMID:15456821; https://doi.org/10.1523/JNEUROSCI.1598-04.2004
  • Wang R, Lewin GR. The Cav3.2 T-type calcium channel regulates temporal coding in mouse mechanoreceptors. J Physiol 2011; 589:2229-43; PMID:21486775; https://doi.org/10.1113/jphysiol.2010.203463
  • Bezprozvanny I, Tsien RW. Voltage-dependent blockade of diverse types of voltage-gated Ca2+ channels expressed in Xenopus oocytes by the Ca2+ channel antagonist mibefradil (Ro 40-5967). Mol Pharmacol 1995; 48:540-9; PMID:7565636
  • Jimenez C, Bourinet E, Leuranguer V, Richard S, Snutch TP, Nargeot J. Determinants of voltage-dependent inactivation affect Mibefradil block of calcium channels. Neuropharmacology 2000; 39:1-10; PMID:10665814
  • Moosmang S, Haider N, Bruderl B, Welling A, Hofmann F. Antihypertensive effects of the putative T-type calcium channel antagonist mibefradil are mediated by the L-type calcium channel Cav1.2. Circ Res 2006; 98:105-10; PMID:16306443; https://doi.org/10.1161/01.RES.0000197851.11031.9c
  • Frandsen RH, Salomonsson M, Hansen PB, Jensen LJ, Braunstein TH, Holstein-Rathlou NH, Sorensen CM. No apparent role for T-type Ca channels in renal autoregulation. Pflugers Arch 2015; 468(4):541-50; PMID:26658945; https://doi.org/10.1007/s00424-015-1770-9
  • Hansen PB. Functional importance of T-type voltage-gated calcium channels in the cardiovascular and renal system: news from the world of knockout mice. Am J Physiol Regul Integr Comp Physiol 2015; 308:R227-R37; PMID:25519728; https://doi.org/10.1152/ajpregu.00276.2014
  • Harraz OF, Brett SE, Zechariah A, Romero M, Puglisi JL, Wilson SM, Welsh DG. Genetic ablation of CaV3.2 channels enhances the arterial myogenic response by modulating the RyR-BKCa axis. Arterioscler Thromb Vasc Biol 2015; 35:1843-51; PMID:26069238; https://doi.org/10.1161/ATVBAHA.115.305736
  • Howitt L, Kuo IY, Ellis A, Chaston DJ, Shin HS, Hansen PB, Hill CE. Chronic deficit in nitric oxide elicits oxidative stress and augments T-type calcium-channel contribution to vascular tone of rodent arteries and arterioles. Cardiovasc Res 2013; 98:449-57; PMID:23436820; https://doi.org/10.1093/cvr/cvt043
  • Davis MJ, Hill MA. Signaling mechanisms underlying the vascular myogenic response. Physiol Rev 1999; 79:387-423; PMID:10221985
  • Hill MA, Davis MJ, Meininger GA, Potocnik SJ, Murphy TV. Arteriolar myogenic signalling mechanisms: Implications for local vascular function. Clin Hemorheol Microcirc 2006; 34:67-79; PMID:16543619
  • Videbaek LM, Aalkjaer C, Mulvany MJ. Pinacidil opens K+-selective channels causing hyperpolarization and relaxation of noradrenaline contractions in rat mesenteric resistance vessels. Br J Pharmacol 1988; 95:103-8; PMID:3219470
  • Bratz IN, Falcon R, Partridge LD, Kanagy NL. Vascular smooth muscle cell membrane depolarization after NOS inhibition hypertension. Am J Physiol Heart Circ Physiol 2002; 282:H1648-H55; PMID:11959627; https://doi.org/10.1152/ajpheart.00824.2001
  • Monos E, Raffai G, Contney SJ, Stekiel WJ, Cowley AW, Jr. Axial stretching of extremity artery induces reversible hyperpolarization of smooth muscle cell membrane in vivo. Acta Physiol Hung 2001; 88:197-206; PMID:12162578; https://doi.org/10.1556/APhysiol.88.2001.3-4.2
  • Burns WR, Cohen KD, Jackson WF. K+-induced dilation of hamster cremasteric arterioles involves both the Na+/K+-ATPase and inward-rectifier K+ channels. Microcirculation 2004; 11:279-93; PMID:15280082; https://doi.org/10.1080/10739680490425985
  • Wesselman JP, Schubert R, VanBavel ED, Nilsson H, Mulvany MJ. KCa-channel blockade prevents sustained pressure-induced depolarization in rat mesenteric small arteries. Am J Physiol 1997; 272:H2241-H9; PMID:9176292
  • Knot HJ, Standen NB, Nelson MT. Ryanodine receptors regulate arterial diameter and wall [Ca2+] in cerebral arteries of rat via Ca2+-dependent K+ channels. J Physiol 1998; 508(Pt 1):211-21; PMID:9490841
  • Hill MA, Yang Y, Ella SR, Davis MJ, Braun AP. Large conductance, Ca2+-activated K+ channels (BKCa) and arteriolar myogenic signaling. FEBS Lett 2010; 584:2033-42; PMID:20178789; https://doi.org/10.1016/j.febslet.2010.02.045
  • Mace PJ, Stallard TJ, Littler WA. The effect of felodipine on forearm haemodynamics and the myogenic response of the forearm resistance vessels in normal man. Br J Clin Pharmacol 1985; 20:383-6; PMID:4074606
  • VanBavel E, Wesselman JP, Spaan JA. Myogenic activation and calcium sensitivity of cannulated rat mesenteric small arteries. Circ Res 1998; 82:210-20; PMID:9468192
  • Coats P, Johnston F, MacDonald J, McMurray JJ, Hillier C. Signalling mechanisms underlying the myogenic response in human subcutaneous resistance arteries. Cardiovasc Res 2001; 49:828-37; PMID:11230983
  • Jeppesen P, Aalkjaer C, Bek T. Myogenic response in isolated porcine retinal arterioles. Curr Eye Res 2003; 27:217-22; PMID:14562172
  • Abd El-Rahman RR, Harraz OF, Brett SE, Anfinogenova Y, Mufti RE, Goldman D, Welsh DG. Identification of L- and T-type Ca2+ channels in rat cerebral arteries: role in myogenic tone development. Am J Physiol Heart Circ Physiol 2013; 304:H58-H71; PMID:23103495; https://doi.org/10.1152/ajpheart.00476.2012
  • Fernandez JA, McGahon MK, McGeown JG, Curtis TM. CaV3.1 T-Type Ca2+ channels contribute to myogenic signaling in rat retinal arterioles. Invest Ophthalmol Vis Sci 2015; 56:5125-32; PMID:26241400; https://doi.org/10.1167/iovs.15-17299
  • Griffin KA, Hacioglu R, Abu-Amarah I, Loutzenhiser R, Williamson GA, Bidani AK. Effects of calcium channel blockers on “dynamic” and “steady-state step” renal autoregulation. Am J Physiol Renal Physiol 2004; 286:F1136-F43; PMID:14996672; https://doi.org/10.1152/ajprenal.00401.2003
  • Feng MG, Li M, Navar LG. T-type calcium channels in the regulation of afferent and efferent arterioles in rats. Am J Physiol Renal Physiol 2004; 286:F331-F7; PMID:14583435; https://doi.org/10.1152/ajprenal.00251.2003
  • VanBavel E, Sorop O, Andreasen D, Pfaffendorf M, Jensen BL. Role of T-type calcium channels in myogenic tone of skeletal muscle resistance arteries. Am J Physiol Heart Circ Physiol 2002; 283:H2239-H43; PMID:12388244; https://doi.org/10.1152/ajpheart.00531.2002
  • Lam E, Skarsgard P, Laher I. Inhibition of myogenic tone by mibefradil in rat cerebral arteries. Eur J Pharmacol 1998; 358:165-8; PMID:9808266
  • Smirnov SV, Loutzenhiser K, Loutzenhiser R. Voltage-activated Ca(2+) channels in rat renal afferent and efferent myocytes: no evidence for the T-type Ca(2+) current. Cardiovasc Res 2013; 97:293-301; PMID:23042470; https://doi.org/10.1093/cvr/cvs310
  • Gordienko DV, Clausen C, Goligorsky MS. Ionic currents and endothelin signaling in smooth muscle cells from rat renal resistance arteries. Am J Physiol 1994; 266:F325-F41; PMID:8141333
  • Reslerova M, Loutzenhiser R. Divergent mechanisms of ATP-sensitive K+ channel-induced vasodilation in renal afferent and efferent arterioles. Evidence of L-type Ca2+ channel-dependent and -independent actions of pinacidil. Circ Res 1995; 77:1114-20; PMID:7586223
  • Loutzenhiser K, Loutzenhiser R. Angiotensin II-induced Ca(2+) influx in renal afferent and efferent arterioles: differing roles of voltage-gated and store-operated Ca(2+) entry. Circ Res 2000; 87:551-7; PMID:11009559
  • Briggs JP, Wright FS. Feedback control of glomerular filtration rate: site of the effector mechanism. Am J Physiol 1979; 236:F40-F7; PMID:434154
  • Steinhausen M, Blum M, Fleming JT, Holz FG, Parekh N, Wiegman DL. Visualization of renal autoregulation in the split hydronephrotic kidney of rats. Kidney Int 1989; 35:1151-60; PMID:2770100
  • Wang X, Aukland K, Iversen BM. Autoregulation of total and zonal glomerular filtration rate in spontaneously hypertensive rats during antihypertensive therapy. J Cardiovasc Pharmacol 1996; 28:833-41; PMID:8961082
  • Just A, Wittmann U, Ehmke H, Kirchheim HR. Autoregulation of renal blood flow in the conscious dog and the contribution of the tubuloglomerular feedback. J Physiol (Lond) 1998; 506:275-90; PMID:9481688
  • Griffin KA, Picken M, Bakris GL, Bidani AK. Comparative effects of selective T- and L-type calcium channel blockers in the remnant kidney model. Hypertension 2001; 37:1268-72; PMID:11358939
  • Sorensen CM, Giese I, Braunstein TH, Holstein-Rathlou NH, Salomonsson M. Closure of multiple types of K+ channels is necessary to induce changes in renal vascular resistance in vivo in rats. Pflugers Arch 2011; 462:655-67; PMID:21874333; https://doi.org/10.1007/s00424-011-1018-2
  • Thuesen AD, Andersen H, Cardel M, Toft A, Walter S, Marcussen N, Jensen BL, Bie P, Hansen PB. Differential effect of T-type voltage-gated Ca2+ channel disruption on renal plasma flow and glomerular filtration rate in vivo. Am J Physiol Renal Physiol 2014; 307:F445-F52; PMID:24966091; https://doi.org/10.1152/ajprenal.00016.2014
  • Kloke HJ, Branten AJ, Huysmans FT, Wetzels JF. Antihypertensive treatment of patients with proteinuric renal diseases: risks or benefits of calcium channel blockers? Kidney Int 1998; 53:1559-73; PMID:9607186; https://doi.org/10.1046/j.1523-1755.1998.00912.x
  • Epstein M. Calcium antagonists and renal hemodynamics: implications for renal protection. Clin Invest Med 1991; 14:590-5; PMID:1794210
  • Ohishi M, Takagi T, Ito N, Terai M, Tatara Y, Hayashi N, Shiota A, Katsuya T, Rakugi H, Ogihara T. Renal-protective effect of T-and L-type calcium channel blockers in hypertensive patients: an Amlodipine-to-Benidipine Changeover (ABC) study. Hypertens Res 2007; 30:797-806; PMID:18037772; https://doi.org/10.1291/hypres.30.797
  • Yamamoto E, Kataoka K, Dong YF, Nakamura T, Fukuda M, Nako H, Ogawa H, Kim-Mitsuyama S. Benidipine, a dihydropyridine L-type/T-type calcium channel blocker, affords additive benefits for prevention of cardiorenal injury in hypertensive rats. J Hypertens 2010; 28:1321-9; PMID:20224431; https://doi.org/10.1097/HJH.0b013e3283388045
  • Enyeart JJ, Biagi BA, Day RN, Sheu SS, Maurer RA. Blockade of low and high threshold Ca2+ channels by diphenylbutylpiperidine antipsychotics linked to inhibition of prolactin gene expression. J Biol Chem 1990; 265:16373-9; PMID:1697857
  • Mishra SK, Hermsmeyer K. Selective inhibition of T-type Ca2+ channels by Ro 40-5967. Circ Res 1994; 75:144-8; PMID:8013072
  • Kuo L, Davis MJ, Chilian WM. Myogenic activity in isolated subepicardial and subendocardial coronary arterioles. Am J Physiol 1988; 255:H1558-H62; PMID:2462367
  • Nyborg NC, Mikkelsen EO. Comparison of the inhibitory effects of nifedipine and nimodipine on mechanical responses of isolated rat coronary small arteries. J Cardiovasc Pharmacol 1987; 9:519-24; PMID:2439831
  • Chen CC, Lamping KG, Nuno DW, Barresi R, Prouty SJ, Lavoie JL, Cribbs LL, England SK, Sigmund CD, Weiss RM, et al. Abnormal coronary function in mice deficient in alpha1H T-type Ca2+ channels. Science 2003; 302:1416-8; PMID:14631046; https://doi.org/10.1126/science.1089268
  • Knot HJ, Nelson MT. Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure. J Physiol 1998; 508(Pt 1):199-209; PMID:9490839
  • Harraz OF, Abd El-Rahman RR, Bigdely-Shamloo K, Wilson SM, Brett SE, Romero M, Gonzales AL, Earley S, Vigmond EJ, Nygren A, et al. Ca(V)3.2 channels and the induction of negative feedback in cerebral arteries. Circ Res 2014; 115:650-61; PMID:25085940; https://doi.org/10.1161/CIRCRESAHA.114.304056
  • Chlopicki S, Nilsson H, Mulvany MJ. Initial and sustained phases of myogenic response of rat mesenteric small arteries. Am J Physiol Heart Circ Physiol 2001; 281:H2176-H83; PMID:11668080
  • Watanabe J, Keitoku M, Hangai K, Karibe A, Takishima T. alpha-Adrenergic augmentation of myogenic response in rat arterioles: role of protein kinase C. Am J Physiol 1993; 264:H547-H52; PMID:8383459
  • Bund SJ. Spontaneously hypertensive rat resistance artery structure related to myogenic and mechanical properties. Clin Sci (Lond) 2001; 101:385-93; PMID:11566076
  • Gros R, Van WR, You X, Thorin E, Husain M. Effects of age, gender, and blood pressure on myogenic responses of mesenteric arteries from C57BL/6 mice. Am J Physiol Heart Circ Physiol 2002; 282:H380-H8; PMID:11748085
  • Scotland RS, Chauhan S, Vallance PJ, Ahluwalia A. An endothelium-derived hyperpolarizing factor-like factor moderates myogenic constriction of mesenteric resistance arteries in the absence of endothelial nitric oxide synthase-derived nitric oxide. Hypertension 2001; 38:833-9; PMID:11641295
  • Wesselman JP, VanBavel E, Pfaffendorf M, Spaan JA. Voltage-operated calcium channels are essential for the myogenic responsiveness of cannulated rat mesenteric small arteries. J Vasc Res 1996; 33:32-41; PMID:8603124
  • Zhang J, Berra-Romani R, Sinnegger-Brauns MJ, Striessnig J, Blaustein MP, Matteson DR. Role of Cav1.2 L-type Ca2+ channels in vascular tone: effects of nifedipine and Mg2+. Am J Physiol Heart Circ Physiol 2007; 292:H415-H25; PMID:16980345; https://doi.org/10.1152/ajpheart.01214.2005
  • Gustafsson F, Andreasen D, Salomonsson M, Jensen BL, Holstein-Rathlou N. Conducted vasoconstriction in rat mesenteric arterioles: role for dihydropyridine-insensitive Ca(2+) channels. Am J Physiol Heart Circ Physiol 2001; 280:H582-H90; PMID:11158955
  • Potocnik SJ, Murphy TV, Kotecha N, Hill MA. Effects of mibefradil and nifedipine on arteriolar myogenic responsiveness and intracellular Ca(2+). Br J Pharmacol 2000; 131:1065-72; PMID:11082112; https://doi.org/10.1038/sj.bjp.0703650
  • Kotecha N, Hill MA. Myogenic contraction in rat skeletal muscle arterioles: smooth muscle membrane potential and Ca(2+) signaling. Am J Physiol Heart Circ Physiol 2005; 289:H1326-34; PMID:15863456; https://doi.org/10.1152/ajpheart.00323.2005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.