4,898
Views
28
CrossRef citations to date
0
Altmetric
Review

Acid-sensing ion channel 3: An analgesic target

ORCID Icon, ORCID Icon & ORCID Icon
Pages 94-127 | Received 09 Nov 2020, Accepted 13 Nov 2020, Published online: 04 Jan 2021

References

  • Hutchings CJ, Colussi P, Clark TG. Ion channels as therapeutic antibody targets. MAbs [Internet]. 2019;11(2):265–296.
  • Santos R, Ursu O, Gaulton A, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov. 2016;16(1):19–34. .
  • Palmer LG. Ion selectivity of the apical membrane Na channel in the toad urinary bladder. J Membr Biol. 1982;67(1):91–98.
  • Wichmann L, Althaus M. Evolution of Epithelial Sodium Channels - current concepts and hypotheses. Am J Physiol Integr Comp Physiol. 2020. DOI:https://doi.org/10.1152/ajpregu.00144.2020
  • Waldmann R, Weille JD, Champigny G, et al. Molecular Cloning of a Non-inactivating Proton-gated Na+Channel Specific for Sensory Neurons. J Biol Chem. 1997; (34):20975–20978. DOI:https://doi.org/10.1074/jbc.272.34.20975.
  • Benos DJ. Amiloride: a molecular probe of sodium transport in tissues and cells. Am J Physiol. 1982;242(3):C131–145.
  • Schaefer L, Sakai H, Mattei MG, et al. Molecular cloning, functional expression and chromosomal localization of an amiloride-sensitive Na + channel from human small intestine.. FEBS Lett. 2000; (2–3):p. 205–210. DOI:https://doi.org/10.1016/S0014-5793(00)01403-4.
  • Hoagland EN, Sherwood TW, Lee KG, et al. Identification of a calcium permeable human acid-sensing ion channel 1 transcript variant. J Biol Chem. 2010;285(53):41852–41862. .
  • Babinski K, Catarsi S, Biagini G, et al. Mammalian ASIC2a and ASIC3 Subunits Co-assemble into Heteromeric Proton-gated Channels Sensitive to Gd3+.. J Biol Chem. 2000;275(37):28519–28525. .
  • Gründer S, Geissler HS, Bässler EL, et al. A new member of acid-sensing ion channels from pituitary gland. Neuroreport. 2000;11(8):1607–1611. .
  • Babinski K, Lê KT, Séguéla P. Molecular cloning and regional distribution of a human proton receptor subunit with biphasic functional properties. J Neurochem. 1999;72(1):51–57.
  • Jasti J, Furukawa H, Gonzales EB, et al. Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH. Nature. 2007;449(7160):316–323. .
  • Carnally SM, Dev HS, Stewart AP, et al. Direct visualization of the trimeric structure of the ASIC1a channel, using AFM imaging. Biochem Biophys Res Commun. 2008;372(4):752–755. .
  • Lingueglia E, De Weille JR, Bassilana F, et al. A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells. J Biol Chem. 1997;272(47):29778–29783. .
  • Akopian AN, Chen CC, Ding Y, et al. A new member of the acid-sensing ion channel family. Neuroreport. 2000;11(10):2217–2222. .
  • Smith ESJ, Zhang X, Cadiou H, et al. Proton binding sites involved in the activation of acid-sensing ion channel ASIC2a. Neurosci Lett. 2007;426(1):12–17. .
  • Donier E, Rugiero F, Jacob C, et al. Regulation of ASIC activity by ASIC4 - New insights into ASIC channel function revealed by a yeast two-hybrid assay. Eur J Neurosci. 2008;28(1):74–86. .
  • Hesselager M, Timmermann DB, Ahring PK. pH Dependency and Desensitization Kinetics of Heterologously Expressed Combinations of Acid-sensing Ion Channel Subunits. J Biol Chem. 2004;279(12):11006–11015.
  • De Weille JR, Bassilana F, Lazdunski M, et al. Identification, functional expression and chromosomal localisation of a sustained human proton-gated cation channel. FEBS Lett. 1998; (3):p. 257–260. DOI:https://doi.org/10.1016/S0014-5793(98)00916-8.
  • Krishtal OA, Pidoplichko VI. A receptor for protons in the nerve cell membrane. Neuroscience. 1980;5(12):2325–2327.
  • Jones NG, Slater R, Cadiou H, et al. Acid-induced pain and its modulation in humans. J Neurosci. 2004;24(48):10974–10979. .
  • Heber S, Ciotu CI, Hartner G, et al. TRPV1 antagonist BCTC inhibits pH 60-induced pain in human skin.. Pain. 2020;00:1.
  • Ugawa S, Ueda T, Ishida Y, et al. Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. J Clin Invest. 2002;110(8):1185–1190. .
  • Pattison LA, Callejo G. St John Smith E. Evolution of acid nociception: ion channels and receptors for detecting acid. Philos Trans R Soc B Biol Sci. 2019;374(1785):20190291.
  • Zeisel A, Hochgerner H, Lönnerberg P, et al. Molecular Architecture of the Mouse Nervous System. Cell. 2018;174(4):e22. .
  • Hockley JRF, Taylor TS, Callejo G, et al. Single-cell RNAseq reveals seven classes of colonic sensory neuron. Gut. 2019;68:633–644.
  • Waldmann R, Champigny G, Bassilana F, et al. A proton-gated cation channel involved in acid-sensing. Nature. 1997; (6621):p. 173–177. DOI:https://doi.org/10.1038/386173a0.
  • St. John Smith E. Advances in understanding nociception and neuropathic pain. J Neurol. 2018;265(2):231–238.
  • Paukert M, Chen X, Polleichtner G, et al. Candidate Amino Acids Involved in H+ Gating of Acid-sensing Ion Channel 1a. J Biol Chem. 2008;283(1):572–581. .
  • Tianbo L, Youshan Y, Canessa CM. Interaction of the aromatics Tyr-72/Trp-288 in the interface of the extracellular and transmembrane domains is essential for proton gating of acid-sensing ion channels. J Biol Chem. 2009;284(7):4689–4694.
  • Schuhmacher LN, Srivats S, Smith ESJ. Structural domains underlying the activation of acid-sensing ion channel 2a. Mol Pharmacol. 2015;87(4):561–571.
  • Liechti LAL, Bernèche S, Bargeton B, et al. A combined computational and functional approach identifies new residues involved in pH-dependent gating of ASIC1a. J Biol Chem. 2010;285(21):16315–16329. .
  • Vecchia MCD, Rued AC, Carattino MD. Gating transitions in the palm domain of ASIC1a. J Biol Chem. 2013;288(8):5487–5495.
  • Sutherland SP, Benson CJ, Adelman JP, et al. Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons. Proc Natl Acad Sci USA. 2001;98(2):711–716. .
  • Schuhmacher LN, Callejo G, Srivats S, et al. Naked mole-rat Acid-sensing ion channel 3 forms nonfunctional homomers, but functional heteromers. J Biol Chem. 2018;293(5):1756–1766. .
  • Delaunay A, Gasull X, Salinas M, et al. Human ASIC3 channel dynamically adapts its activity to sense the extracellular pH in both acidic and alkaline directions. Proc Natl Acad Sci USA. 2012;109(32):13124–13129. .
  • Bisson J, Younker J. Correcting arterial blood gases for temperature: (when) is it clinically significant? Nurs Crit Care. 2006;11(5):232–238.
  • Goldie I, Nachemson A. Synovial ph in rheumatoid knee-joints I. The effect of synovectomy. Acta Orthop. 1969;40(5):634–641.
  • Shishkin VI, Kudryavtseva GV, Ryabkov AB. A pH-dependent mechanism of energy transformation in joint fluid cells in osteoarthrosis of the knee joint and benefits of chondroitinsulfate. Ter Arkh. 2005;77(10):79–82.
  • Pakpoy RK. Urinary Ph in Gout. Australas Ann Med. 1965;14(1):35–39.
  • Howell DS. Preliminary Observations on Local pH in Gouty Tophi and Synovial Fluid. Arthritis Rheum. 1965;8(4):736–740.
  • Vaidya B, Bhochhibhoya M, Nakarmi S. Synovial fluid uric acid level aids diagnosis of gout. Biomed Reports. 2018;9:60–64.
  • Ngamtrakulpanit L, Yu Y, Adjei A, et al. Identification of Intrinsic Airway Acidification in Pulmonary Tuberculosis. Glob J Health Sci. 2010;2(1):106–110. .
  • Tang XX, Ostedgaard LS, Hoegger MJ, et al. Acidic pH increases airway surface liquid viscosity in cystic fibrosis. J Clin Invest. 2016;126(3):879–891. .
  • Kostikas K, Papatheodorou G, Ganas K, et al. pH in expired breath condensate of patients with inflammatory airway diseases. Am J Respir Crit Care Med. 2002;165(10):1364–1370. .
  • Gessner C, Hammerschmidt S, Kuhn H, et al. Exhaled breath condensate acidification in acute lung injury. Respir Med. 2003;97(11):1188–1194. .
  • El Banani H, Bernard M, Baetz D, et al. Changes in intracellular sodium and pH during ischaemia-reperfusion are attenuated by trimetazidine: comparison between low- and zero-flow ischaemia. Cardiovasc Res. 2000. DOI:https://doi.org/10.1016/S0008-6363(00)00136-X.
  • Silver IA, Erecinska M. Extracellular glucose concentration in mammalian brain: continuous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo-. and hyperglycemic animals. J Neurosci: hypo-; 1994.
  • Schuhmacher LN, Smith ESJ. Expression of acid-sensing ion channels and selection of reference genes in mouse and naked mole rat.. Mol Brain [Internet]. 2016;9:1–12.
  • Chen CC, England S, Akopian AN, et al. A sensory neuron-specific, proton-gated ion channel. Proc Natl Acad Sci USA. 1998;95(17):10240–10245. .
  • Meng QY, Wang W, Chen XN, et al. Distribution of acid-sensing ion channel 3 in the rat hypothalamus.. Neurosci. 2009;159(3):1126–1134.
  • Cha J, Greenberg T, Song I, et al. Abnormal hippocampal structure and function in clinical anxiety and comorbid depression. Hippocampus. 2016. DOI:https://doi.org/10.1002/hipo.22566.
  • Feijó de Mello ADA, De Mello MF, Carpenter LL, et al. Update on stress and depression: the role of the hypothalamic-pituitary-adrenal (HPA) axis. Rev Bras Psiquiatr. 2003;25(4):231–238. .
  • Wu WL, Lin YW, Min MY, et al. Mice lacking Asic3 show reduced anxiety-like behavior on the elevated plus maze and reduced aggression. Genes, Brain Behav. 2010;9(6):603–614.
  • Cao Q, Wang W, Gu J, et al. Elevated Expression of Acid-Sensing Ion Channel 3 Inhibits Epilepsy via Activation of Interneurons. Mol Neurobiol. 2016;53(1):485–498. .
  • Yan J, Wei X, Bischoff C, et al. pH-evoked dural afferent signaling is mediated by ASIC3 and is sensitized by mast cell mediators. Headache [Internet]. 2013;53(8):1250–1261. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf.. .
  • Deval E, Lingueglia E. Acid-Sensing Ion Channels and nociception in the peripheral and central nervous systems.. Neuropharmacol. 2015;94:49–57.
  • Deval E, Noël J, Lay N, et al. ASIC3, a sensor of acidic and primary inflammatory pain. Embo J. 2008;27(22):3047–3055. .
  • Deval E, Noël J, Gasull X, et al. Acid-sensing ion channels in postoperative pain. J Neurosci. 2011;31(16):6059–6066. .
  • Chen CC, Zimmer A, Sun WH, et al. A role for ASIC3 in the modulation of high-intensity pain stimuli. Proc Natl Acad Sci USA. 2002;99(13):8992–8997. .
  • Peng Z, Li WG, Huang C, et al. ASIC3 Mediates Itch Sensation in Response to Coincident Stimulation by Acid and Nonproton Ligand. Cell Rep [Internet]. 2015;13(2):387–398.
  • Mogil JS, Breese NM, Witty MF, et al. Transgenic expression of a dominant-negative ASIC3 subunit leads to increased sensitivity to mechanical and inflammatory stimuli. J Neurosci. 2005;25(43):9893–9901. .
  • Staniland AA, McMahon SB. Mice lacking acid-sensing ion channels (ASIC) 1 or 2, but not ASIC3, show increased pain behaviour in the formalin test. Eur J Pain [Internet]. 2009;13(6):554–563.
  • Arendt-Nielsen L, Fernández-de-las-Peñas C, Graven-Nielsen T. Basic aspects of musculoskeletal pain: from acute to chronic pain. J Man Manip Ther. 2011;19(4):186–193.
  • Issberner U, Reeh PW, Steen KH. Pain due to tissue acidosis: A mechanism for inflammatory and ischemic myalgia? Neurosci Lett. 1996;208:191–194.
  • Egelius N, Jonsson E, Sunblad L. Studies of hyaluronic acid in rheumatoid arthritis. Ann Rheum Dis. 1956;15(4):357–363.
  • Ikeuchi M, Kolker S, Burnes L, et al. Role of ASIC3 in the primary and secondary hyperalgesia produced by joint inflammation in mice. J Pain. 2009;137(3):662–669. .
  • Ikeuchi M, Kolker SJ, Sluka KA. Acid-Sensing Ion Channel 3 Expression in Mouse Knee Joint Afferents and Effects of Carrageenan-Induced Arthritis. J Pain. 2009. DOI:https://doi.org/10.1016/j.jpain.2008.10.010
  • Kolker SJ, Walder RY, Usachev Y, et al. Acid-sensing ion channel 3 expressed in type B synoviocytes and chondrocytes modulates hyaluronan expression and release.. Ann Rheum Dis [Internet]. 2010;69(5):903–909. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf.
  • Gong W, Kolker SJ, Usachev Y, et al. Acid-sensing ion channel 3 decreases phosphorylation of extracellular signal-regulated kinases and induces synoviocyte cell death by increasing intracellular calcium. Arthritis Res Ther. 2014;16(3):1–12. .
  • Ross JL, Queme LF, Cohen ER, et al. Muscle IL1β drives ischemic myalgia via ASIC3-mediated sensory neuron sensitization. J Neurosci. 2016;36(26):6857–6871. .
  • National Institute for Health and Clinical Excellence).. Osteoarthritis: the care and management of Osteoarthritis [Internet]. 2012. Available from: https://www.nice.org.uk/guidance/cg177/resources/osteoarthritis-update-final-scope2.
  • Izumi M, Ikeuchi M, Ji Q, et al. Local ASIC3 modulates pain and disease progression in a rat model of osteoarthritis. J Biomed Sci. 2012;19(1):1–8.
  • Stills HF. Adjuvants and antibody production: dispelling the myths associated with Freund’s complete and other adjuvants. Ilar J. 2005;46(3):280–293.
  • Winter CA, Risley EA, Nuss GW. Carrageenin-Induced Edema in Hind Paw of the Rat as an Assay for Anti-inflammatory Drugs. Exp Biol Med. 1962;111(3):544–547.
  • Frasnelli ME, Tarussio D, Chobaz-Péclat V, et al. TLR2 modulates inflammation in zymosan-induced arthritis in mice. Arthritis Res Ther. 2005;7(2):370–379. .
  • Yen Y, Tu P, Chen C, et al. Role of acid-sensing ion channel 3 in sub-acute-phase inflammation. Mol Pain. 2009;5:1–16.
  • Walder RY, Rasmussen LA, Rainier JD, et al. ASIC1 and ASIC3 Play Different Roles in the Development of Hyperalgesia After Inflammatory Muscle Injury. J Pain. 2010;11(3):210–218. .
  • Sluka KA, Price MP, Breese NM, et al. Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1. Pain. 2003;106(3):229–239.
  • Sluka KA, Radhakrishnan R, Benson CJ, et al. ASIC3 in muscle mediates mechanical, but not heat, hyperalgesia associated with muscle inflammation. Pain. 2007;129(1):102–112. .
  • Borzan J, Zhao C, Meyer RA, et al. A role for acid-sensing ion channel 3, but not acid-sensing ion channel 2, in sensing dynamic mechanical stimuli. Anesthesiology. 2010;113(3):647–654. .
  • Authier N, Gillet JP, Fialip J, et al. An animal model of nociceptive peripheral neuropathy following repeated cisplatin injections. Exp Neurol. 2003;182(1):12–20. .
  • Hori K, Ozaki N, Suzuki S, et al. Upregulations of P2X3 and ASIC3 involve in hyperalgesia induced by cisplatin administration in rats. Pain. 2010;149(2):393–405. .
  • Walder RY, Gautam M, Wilson SP, et al. Selective targeting of ASIC3 using artificial miRNAs inhibits primary and secondary hyperalgesia after muscle inflammation. Pain. 2011. DOI:https://doi.org/10.1016/j.pain.2011.06.027.
  • Light AR, White AT, Hughen RW, et al. Moderate exercise increases expression for sensory, adrenergic and immune genes in chronic fatigue syndrome patients, but not in normal subjects. Pain. 2009;10(10):1099–1112. .
  • Gregory NS, Gibson-Corley K, Frey-Law L, et al. Fatigue-enhanced hyperalgesia in response to muscle insult: induction and development occur in a sex-dependent manner. Pain. 2013;154(12):2668–2676. .
  • Collaborators G. D and II and P. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990 – 2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2017;392::1789–1858. 2018.
  • Liang CZ, Li H, Tao YQ, et al. The relationship between low pH in intervertebral discs and low back pain: A systematic review. Arch Med Sci. 2012;6:952–956.
  • Brand FJ, Forouzandeh M, Kaur H, et al. Acidification changes affect the inflammasome in human nucleus pulposus cells.. J Inflamm (United Kingdom) [Internet]. 2016;13:1–11.
  • Uchiyama Y, Cheng CC, Danielson KG, et al. Expression of Acid-Sensing Ion Channel 3 (ASIC3) in nucleus pulposus cells of the intervertebral disc is regulated by p75NTR and ERK signaling. J Bone Miner Res. 2007;22(12):p. 1996–2006. .
  • Obata K, Katsura H, Sakurai J, et al. Suppression of the p75 Neurotrophin Receptor in Uninjured Sensory Neurons Reduces Neuropathic Pain after Nerve Injury. J Neurosci. 2006;26:11974–11986.
  • Uchiyama Y, Guttapalli A, Gajghate S, et al. SMAD3 functions as a transcriptional repressor of acid-sensing ion channel 3 (ASIC3) in nucleus pulposus cells of the intervertebral disc. J Bone Miner Res. 2008;23:1619–1628.
  • Liu J, Tao H, Wang H, et al. Biological behavior of human nucleus pulposus mesenchymal stem cells in response to changes in the acidic environment during intervertebral disc degeneration. Stem Cells Dev. 2017;26(12):901–911. .
  • Gilbert HTJ, Hodson N, Baird P, et al. Acidic pH promotes intervertebral disc degeneration: acid-sensing ion channel-3 as a potential therapeutic target. Sci Rep. 2016;6(1):1–12. .
  • Molliver DC, Immke DC, Fierro L, et al. ASIC3, an acid-sensing ion channel, is expressed in metaboreceptive sensory neurons. Mol Pain. 2005;1:1–13.
  • Liu J, Gao Z, Li J. Femoral artery occlusion increases expression of ASIC3 in dorsal root ganglion neurons. Am J Physiol - Hear Circ Physiol. 2010;299(5):1357–1364.
  • Hattori T, Chen J, Harding AMS, et al. ASIC2a and ASIC3 heteromultimerize to form pH-sensitive channels in mouse cardiac DRG neurons. Circ Res. 2009;105(3):279–286. .
  • Immke DC, McCleskey EW. Lactate enhances the acid-sensing NA+ channel on ischemia-sensing neurons. Nat Neurosci. 2001;4(9):869–870.
  • Yagi J, Wenk HN, Naves LA, et al. Sustained currents through ASIC3 ion channels at the modest pH changes that occur during myocardial ischemia. Circ Res. 2006;99(5):501–509. .
  • Birdsong WT, Fierro L, Williams FG, et al. Sensing muscle ischemia: coincident detection of acid and ATP via interplay of two ion channels. Neuron. 2010. DOI:https://doi.org/10.1016/j.neuron.2010.09.029.
  • Light AR, Hughen RW, Zhang J, et al. Dorsal root ganglion neurons innervating skeletal muscle respond to physiological combinations of protons, ATP, and lactate mediated by ASIC, P2X, and TRPV1. J Neurophysiol. 2008;100(3):1184–1201. .
  • Tan ZY, Lu Y, Whiteis CA, et al. Acid-sensing ion channels contribute to transduction of extracellular acidosis in rat carotid body glomus cells. Circ Res. 2007;101(10):1009–1019. .
  • Abboud FM, Benson CJ. ASICs and cardiovascular homeostasis. Neuropharmacol. 2015;94:87–98.
  • Cheng CF, Kuo TBJ, Chen WN, et al. Abnormal cardiac autonomic regulation in mice lacking ASIC3. Biomed Res Int. 2014;2014:709159.
  • Ko YL, Hsu LA, Wu S, et al. Genetic variation in the ASIC3 gene influences blood pressure levels in Taiwanese. J Hypertens. 2008;26(11):2154–2160. .
  • Lee CH, Sun SH, Lin SH, et al. Role of the acid-sensing ion channel 3 in blood volume control. Circ J. 2011;75(4):874–883. .
  • Napoli R, Guardasole V, Zarra E, et al. Migraine attack restores the response of vascular smooth muscle cells to nitric oxide but not to norepinephrine. World J Cardiol. 2013;5(10):375. .
  • Chung WS, Farley JM, Swenson A, et al. Extracellular acidosis activates ASIC-like channels in freshly isolated cerebral artery smooth muscle cells. Am J Physiol - Cell Physiol. 2010;298(5):1198–1208. .
  • Grifoni SC, Jernigan NL, Hamilton G, et al. ASIC proteins regulate smooth muscle cell migration. Microvasc Res. 2008;75(2):202–210. .
  • Fromy B, Lingueglia E, Sigaudo-Roussel D, et al. Asic3 is a neuronal mechanosensor for pressure-induced vasodilation that protects against pressure ulcers. Nat Med. 2012;18(8):1205–1207. .
  • Fukuda T, Ichikawa H, Terayama R, et al. ASIC3-immunoreactive neurons in the rat vagal and glossopharyngeal sensory ganglia. Brain Res. 2006;1081(1):150–155. .
  • Page AJ, Brierley SM, Martin CM, et al. Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function. Gut. 2005;54(10):1408–1415. .
  • Hughes PA, Brierley SM, Young RL, et al. Localization and comparative analysis of acid-sensing ion channel (ASIC1, 2, and 3) mRNA expression in mouse colonic sensory neurons within thoracolumbar dorsal root ganglia. J Comp Neurol. 2007;500(5):p. p. 863–875. .
  • Dusenkova S, Ru F, Surdenikova L, et al. The expression profile of acid-sensing ion channel (ASIC) subunits ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3 in the esophageal vagal afferent nerve subtypes. Am J Physiol - Gastrointest Liver Physiol. 2014;307(9):G922–G930. .
  • Sugiura T, Dang K, Lamb K, et al. Acid-sensing properties in rat gastric sensory neurons from normal and ulcerated stomach. J Neurosci. 2005;25(10):2617–2627. .
  • Wultsch T, Painsipp E, Shahbazian A, et al. Deletion of the acid-sensing ion channel ASIC3 prevents gastritis-induced acid hyperresponsiveness of the stomach – brainstem axis. Pain. 2015;134(3):245–253. .
  • Bielefeldt K, Davis BM. Differential effects of ASIC3 and TRPV1 deletion on gastroesophageal sensation in mice. Am J Physiol - Gastrointest Liver Physiol. 2007;294:130–138.
  • Yiangou Y, Facer P, Smith JAM, et al. Increased acid-sensing ion channel ASIC-3 in inflamed human intestine. Eur J Gastroenterol Hepatol. 2001;13(8):891–896. .
  • Jones RCW, Xu L, Gebhart GF. The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J Neurosci. 2005;25(47):p. 10981–10989.
  • Jones RCW, Otsuka E, Wagstrom E, et al. Short-Term Sensitization of Colon Mechanoreceptors Is Associated With Long-Term Hypersensitivity to Colon Distention in the Mouse. Gastroenterology. 2007;133(1):184–194. .
  • Groth M, Helbig T, Grau V, et al. Spinal afferent neurons projecting to the rat lung and pleura express acid sensitive channels. Respir Res. 2006;7(1):1–16. .
  • Gu Q, Lee LY. Characterization of acid signaling in rat vagal pulmonary sensory neurons. Am J Physiol - Lung Cell Mol Physiol. 2006;291(1):58–65.
  • Su X, Li Q, Shrestha K, et al. Interregulation of Proton-gated Na+ Channel 3 and Cystic Fibrosis Transmembrane Conductance Regulator.. J Biol Chem. 2006;281(48):36960–36968. .
  • Labaki WW, Han MK. Chronic respiratory diseases: a global view. Lancet Respir [Internet]. 2020;8(6):531–533.
  • Gu Q, Lee LY. Airway irritation and cough evoked by acid: from human to ion channel. Curr Opin Pharmacol. 2011;11(3):238–247.
  • Ricciardolo FLM. Mechanisms of Citric Acid – induced bronchoconstriction. Am J Med. 2001;11(8):18–24.
  • Spathis A, Booth S. End of life care in chronic obstructive pulmonary disease: in search of a good death. Int J COPD. 2008;3:11–29.
  • Liu X, He L, Dinger B, et al. Chronic hypoxia-induced acid-sensitive ion channel expression in chemoafferent neurons contributes to chemoreceptor hypersensitivity. Am J Physiol - Lung Cell Mol Physiol. 2011;301(6):985–992. .
  • Voilley N, De Weille J, Mamet J, et al. Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci. 2001;21(20):8026–8033. .
  • Ishibashi K, Marumo F. Molecular cloning of a DEG/ENaC sodium channel cDNA from human testis. Biochem Biophys Res Commun. 1998;245(2):589–593.
  • Payne B, Brzezinski WA, Clark AV, et al. Lessons Learned from a Middle-Aged Man with Testicular Pain: exercises in Clinical Reasoning. J Gen Intern Med. 2017;32(3):355–359. .
  • Ditting T, Tiegs G, Rodionova K, et al. Do distinct populations of dorsal root ganglion neurons account for the sensory peptidergic innervation of the kidney? Am J Physiol - Ren Physiol. 2009;297(5):1427–1434. .
  • Dang K, Bielefeldt K, Gebhart GF. Differential responses of bladder lumbosacral and thoracolumbar dorsal root ganglion neurons to purinergic agonists, protons, and capsaicin. J Neurosci. 2005;25(15):3973–3984.
  • Montalbetti N, Rooney JG, Marciszyn AL, et al. ASIC3 fine-tunes bladder sensory signaling. Am J Physiol - Ren Physiol. 2018;315(4):F870–F879. .
  • Corrow K, Girard BM, Vizzard MA. Expression and response of acid-sensing ion channels in urinary bladder to cyclophosphamide-induced cystitis. Am J Physiol - Ren Physiol. 2010;298(5):1130–1139.
  • Sánchez-Freire V, Blanchard MG, Burkhard FC, et al. Acid-sensing channels in human bladder: expression, function and alterations during bladder pain syndrome.. J Urol [Internet]. 2011;186(4):1509–1516.
  • Welch A, Mulligan A, Bingham S, & Khaw K. Urine pH is an indicator of dietary acid–base load, fruit and vegetables and meat intakes: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk population study, fruit and vegetables and meat intakes: Results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk population study.Br J Nutr. 2008;99(6):1335–1343. doi:https://doi.org/10.1017/S0007114507862350 6 99 S33-1343
  • Lai HC, Chang SN, Lin HC, et al. Association between urine pH and common uropathogens in children with urinary tract infections. J Microbiol Immunol Infect [Internet]. 2019. doi:https://doi.org/10.1016/j.jmii.2019.08.002
  • Singh I, Gautam LK, Kaur IR. Effect of oral cranberry extract (standardized proanthocyanidin-A) in patients with recurrent UTI by pathogenic E. coli: a randomized placebo-controlled clinical research study. Int Urol Nephrol. 2016. doi:https://doi.org/10.1007/s11255-016-1342-8
  • González-Garrido A, Vega R, Mercado F, et al. Acid-sensing ion channels expression, identity and role in the excitability of the cochlear afferent neurons. Front Cell Neurosci. 2015;9:1–14.
  • Hildebrand MS, De Silva MG, Klockars T, et al. Characterisation of DRASIC in the mouse inner ear. Hear Res. 2004;190(1–2):149–160. .
  • Mercado F, López IA, Acuna D, et al. Acid-sensing ionic channels in the rat vestibular endorgans and ganglia. J Neurophysiol. 2006;96(3):1615–1624. .
  • Wu WL, Wang CH, Huang EYK, et al. Asic3 -/- female mice with hearing deficit affects social development of pups. PLoS One. 2009;4:e6508.
  • Ettaiche M, Deval E, Pagnotta S, et al. Acid-sensing ion channel 3 in retinal function and survival. Investig Ophthalmol Vis Sci. 2009;50(5):2417–2426. .
  • Lilley S, LeTissier P, Robbins J. The Discovery and Characterization of a Proton-Gated Sodium Current in Rat Retinal Ganglion Cells. J Neurosci. 2004;24(5):1013–1022.
  • Lu DW, Chang CJ, Wu JN. The changes of vitreous pH values in an acute glaucoma rabbit model. J Ocul Pharmacol Ther. 2001;17(4):343–350.
  • Solé-Magdalena A, Revuelta EG, Menénez-Díaz I, et al. Human odontoblasts express transient receptor protein and acid-sensing ion channel mechanosensor proteins. Microsc Res Tech. 2011;74(5):p. p. 457–463. .
  • Carda C, Peydró A. Ultrastructural patterns of human dentinal tubules, odontoblasts processes and nerve fibres. Tissue Cell. 2006;38(2):141–150.
  • Ichikawa H, Sugimoto T. The co-expression of ASIC3 with calcitonin gene-related peptide and parvalbumin in the rat trigeminal ganglion. Brain Res. 2002;943(2):287–291.
  • Rahman F, Harada F, Saito I, et al. Detection of acid-sensing ion channel 3 (ASIC3) in periodontal Ruffini endings of mouse incisors.. Neurosci Lett [Internet]. 2011;488(2):173–177.
  • Huque T, Cowart BJ, Dankulich-Nagrudny L, et al. Sour ageusia in two individuals implicates ion channels of the ASIC and PKD families in human sour taste perception at the anterior tongue. PLoS One. 2009;4:e7347.
  • Lin W, Ogura T, Kinnamon SC. Acid-activated cation currents in rat vallate taste receptor cells. J Neurophysiol. 2002;88(1):133–141.
  • Arnett T. Regulation of bone cell function by acid–base balance. Proc Nutr Soc [Internet]. 2003;62(2):511–520. Available from: https://www.cambridge.org/core/product/identifier/S0029665103000673/type/journal_article. .
  • Jahr H, Van Driel M, Van Osch GJVM, et al. Identification of acid-sensing ion channels in bone. Biochem Biophys Res Commun. 2005;337(1):349–354.
  • Yoneda T, Hiasa M, Nagata Y, et al. Acidic microenvironment and bone pain in cancer-colonized bone.. Bonekey Rep [Internet]. 2015;4:1–9.
  • Tong J, Wu W-N, Kong X, et al. Acid-Sensing Ion Channels Contribute to the Effect of Acidosis on the Function of Dendritic Cells. J Immunol. 2011;186(6):3686–3692. .
  • Yu XW, Hu ZL, Ni M, et al. Acid-sensing ion channels promote the inflammation and migration of cultured rat microglia. Glia. 2015;63(3):p. p. 483–496. .
  • Huang C, Hu ZL, Wu WN, et al. Existence and distinction of acid-evoked currents in rat astrocytes. Glia. 2010;58(12):1415–1424. .
  • Wu S, Hsu LA, Chou HH, et al. Association between an ASIC3 gene variant and insulin resistance in Taiwanese.. Clin Chim Acta [Internet]. 2010;411(15–16):1132–1136.
  • Huang SJ, Yang WS, Lin YW, et al. Increase of insulin sensitivity and reversal of age-dependent glucose intolerance with inhibition of ASIC3. Biochem Biophys Res Commun. 2008;371(4):729–734.
  • Khawaja N, Abu-Shennar J, Saleh M, et al. The prevalence and risk factors of peripheral neuropathy among patients with type 2 diabetes mellitus; The case of Jordan. Diabetol Metab Syndr [Internet]. 2018;10:1–10.
  • Hicks CW, Selvin E. Epidemiology of Peripheral Neuropathy and Lower Extremity Disease in Diabetes. Curr Diab Rep. 2019;19:86.
  • Digirolamo M, Newby FD, Lovejoy J. Lactate production in adipose tissue; a regulated function with extra‐adipose implications. Faseb J. 1992. DOI:https://doi.org/10.1096/fasebj.6.7.1563593
  • Mamet J, Baron A, Lazdunski M, et al. Proinflammatory mediators, stimulators of sensory neuron excitability via the expression of acid-sensing ion channels. J Neurosci. 2002;22(24):10662–10670.
  • Deval E, Salinas M, Baron A, et al. ASIC2b-dependent Regulation of ASIC3, an Essential Acid-sensing Ion Channel Subunit in Sensory Neurons via the Partner Protein PICK-1. J Biol Chem. 2004. DOI:https://doi.org/10.1074/jbc.M313078200.
  • Smith ES, Cadiou H, McNaughton PA. Arachidonic acid potentiates acid-sensing ion channels in rat sensory neurons by a direct action. Neuroscience. 2007;145(2):686–698.
  • Marra S, Ferru-clément R, Breuil V, et al. Non-acidic activation of pain-related Acid-Sensing Ion Channel 3 by lipids. EMBO J. 2016;35:414–428.
  • Cadiou H, Studer M, Jones NG, et al. Modulation of acid-sensing ion channel activity by nitric oxide. J Neurosci. 2007;27(48):13251–13260. .
  • Cho JH, Askwith CC. Potentiation of acid-sensing ion channels by sulfhydryl compounds. Am J Physiol - Cell Physiol. 2007;292:C2161–174.
  • Osafo N, Agyare C, Obiri DD, et al. Mechanism of Action of Nonsteroidal Anti-Inflammatory Drugs, Nonsteroidal Anti-Inflammatory Drugs. IntechOpen.. 2017;p. 13. InTech.
  • Lynagh T, Romero-Rojo JL, Lund C, et al. Molecular Basis for Allosteric Inhibition of Acid-Sensing Ion Channel 1a by Ibuprofen. J Med Chem. 2017;60(19):8192–8200. .
  • Lin YW, Min MY, Lin CC, et al. Identification and characterization of a subset of mouse sensory neurons that express acid-sensing ion channel 3. Neuroscience. 2008;151(2):544–557. .
  • Leng T, Lin J, Cottrell JE, et al. Subunit and frequency-dependent inhibition of Acid Sensing Ion Channels by local anesthetic tetracaine.. Mol Pain [Internet]. 2013;9:1. Available from: Molecular Pain
  • Lei Z, Li X, Wang G, et al. Inhibition of acid-sensing ion channel currents by propofol in rat dorsal root ganglion neurons. Clin Exp Pharmacol Physiol. 2014;41(4):p. p. 295–300. .
  • Osmakov DI, Koshelev SG, Andreev YA, et al. Endogenous isoquinoline alkaloids agonists of acid-sensing ion channel type 3. Front Mol Neurosci. 2017;10:1–7.
  • Farrag M, Drobish JK, Puhl HL, et al. Endomorphins potentiate acid-sensing ion channel currents and enhance the lactic acid-mediated increase in arterial blood pressure: effects amplified in hindlimb ischaemia. J Physiol. 2017;595(23):p. p. 7167–7183. .
  • Askwith CC, Benson CJ, Welsh MJ, et al. DEG/ENaC ion channels involved in sensory transduction are modulated by cold temperature. Proc Natl Acad Sci USA. 2001;98(11):6459–6463. .
  • Neelands TR, Zhang X, Mcdonald H, et al. Differential effects of temperature on acid-activated currents mediated by TRPV1 and ASIC channels in rat dorsal root ganglion neurons. Brain Res [Internet]. 2010;1329:55–66.
  • Blanchard MG, Kellenberger S. Effect of a temperature increase in the non-noxious range on proton-evoked ASIC and TRPV1 activity. Pflugers Arch. 2011;461:123–139.
  • Roush GC, Ernst ME, Kostis JB, et al. Dose doubling, relative potency, and dose equivalence of potassium-sparing diuretics affecting blood pressure and serum potassium: systematic review and meta-analyses. J Hypertens. 2016;34(1):11–19. .
  • Kleyman TR, Cragoe EJ. Amiloride and its analogs as tools in the study of ion transport. J Membr Biol [Internet]. 1988;105(1):1–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2852254. .
  • Frelin C, Barbry P, Vigne P, et al. Amiloride and its analogs as tools to inhibit Na+ transport via the Na+ channel, the Na+/H+ antiport and the Na+/Ca2+ exchanger. Biochimie. 1988. DOI:https://doi.org/10.1016/0300-9084(88)90196-4.
  • Manev H, Bertolino M, DeErausquin G. Amiloride blocks glutamate-operated cationic channels and protects neurons in culture from glutamate-induced death. Neuropharmacology. 1990;29(12):1103–1110.
  • Baconguis I, Bohlen CJ, Goehring A, et al. X-ray structure of acid-sensing ion channel 1-snake toxin complex reveals open state of a Na+-selective channel.. Cell. 2014;156(4):717–729.
  • Li WG, Yu Y, Huang C, et al. Nonproton ligand sensing domain is required for paradoxical stimulation of Acid-sensing Ion Channel 3 (ASIC3) channels by amiloride. J Biol Chem. 2011;286(49):42635–42646. .
  • Dubé GR, Lehto SG, Breese NM, et al. Electrophysiological and in vivo characterization of A-317567, a novel blocker of acid sensing ion channels. Pain. 2005;117(1):88–96. .
  • Dwyer JM, Rizzo SJS, Neal SJ, et al. Acid sensing ion channel (ASIC) inhibitors exhibit anxiolytic-like activity in preclinical pharmacological models. Psychopharmacol (Berl). 2009;203(1):41–52. .
  • Kuduk SD, Di Marco CN, Chang RK, et al. Amiloride derived inhibitors of acid-sensing ion channel-3 (ASIC3).. Bioorganic Med Chem Lett [Internet]. 2009;19(9):2514–2518.
  • Kuduk SD, Di Marco CN, Bodmer-Narkevitch V, et al. Synthesis, structure-activity relationship, and pharmacological profile of analogs of the ASIC-3 inhibitor A-317567. ACS Chem Neurosci. 2010;1(1):p. p. 19–24. .
  • Wolkenberg SE, Zhao Z, Mulhearn JJ, et al. High concentration electrophysiology-based fragment screen: discovery of novel acid-sensing ion channel 3 (ASIC3) inhibitors. Bioorganic Med Chem Lett [Internet]. 2011;21(9):2646–2649.
  • Yu Y, Chen Z, Li WG, et al. A nonproton ligand sensor in the acid-sensing ion channel. Neuron. 2010;68(1):61–72. .
  • Callejo G, Pattison LA, Greenhalgh JC, Chakrabarti S, Andreopoulou E, Hockley James R.F., Smith Ewan St. John., Rahman T. In silico screening of GMQ-like compounds reveals guanabenz and sephin1 as new allosteric modulators of acid-sensing ion channel 3. Biochem Pharmacol. 2020;174:113834 doi:https://doi.org/10.1016/j.bcp.2020.113834
  • Agharkar AS, Gonzales EB. 4-Chlorophenylguanidine is an ASIC3 agonist and positive allosteric modulator.. J Pharmacol Sci [Internet]. 2017;133(3):184–186.
  • Lei Z, Sami Shaikh A, Zheng W, et al. Non-proton ligand-sensing domain of acid-sensing ion channel 3 is required for itch sensation. J Neurochem. 2016;139(6):p. p. 1093–1101. .
  • Li WG, Yu Y, Zhang ZD, et al. ASIC3 Channels Integrate Agmatine and Multiple Inflammatory Signals through the Nonproton Ligand Sensing Domain. Mol Pain. 2010;6:1–10.
  • Sastre M, Galea E, Feinstein D, et al. Metabolism of agmatine in macrophages: modulation by lipopolysaccharide and inhibitory cytokines. J Biochem. 1998;330(3):1405–1409. .
  • Wang X, Li WG, Yu Y, et al. Serotonin facilitates peripheral pain sensitivity in a manner that depends on the nonproton ligand sensing domain of ASIC3 channel. J Neurosci. 2013;33(10):4265–4279. .
  • Diochot S, Baron A, Rash LD, et al. A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons. Embo J. 2004;23:1516–1525.
  • Blanchard MG, Rash LD, Kellenberger S. Inhibition of voltage-gated Na + currents in sensory neurones by the sea anemone toxin APETx2. Br J Pharmacol. 2012;165(7):2167–2177.
  • Rahman T, Smith ESJ. In silico assessment of interaction of sea anemone toxin APETx2 and acid sensing ion channel 3. Biochem Biophys Res Commun [Internet]. 2014;450(1):384–389.
  • Kozlov SA, Osmakov DI, Andreev YA, et al. A sea anemone polypeptide toxin inhibiting the ASIC3 acid-sensitive channel. Russ J Bioorganic Chem. 2012;38(6):578–583. .
  • Rodríguez AA, Salceda E, Garateix AG, et al. A novel sea anemone peptide that inhibits acid-sensing ion channels Dedicated to professor Lászlo Béress, a pioneer in the research on sea anemone toxins, for his contributions to this field. Peptides [Internet]. 2014;53:3–12.
  • Osmakov DI, Koshelev SG, Andreev YA, et al. Conversed mutagenesis of an inactive peptide to ASIC3 inhibitor for active sites determination. Toxicon [Internet]. 2016;116:11–16.
  • Osmakov DI, Kozlov SA, Andreev YA, et al. Sea anemone peptide with uncommon β-hairpin structure inhibits acid-sensing ion channel 3 (ASIC3) and reveals analgesic activity. J Biol Chem. 2013;288(32):p. p. 23116–23127. .
  • Bohlen CJ, Chesler AT, Sharif-Naeini R, et al. A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature. 2011. DOI:https://doi.org/10.1038/nature10607.
  • Báez A, Salceda E, Fló M, et al. α-Dendrotoxin inhibits the ASIC current in dorsal root ganglion neurons from rat. Neurosci Lett. 2015;606:p. p. 42–47.
  • Askwith CC, Cheng C, Ikuma M, et al. Neuropeptide FF and FMRFamide Potentiate Acid-Evoked Currents from Sensory Neurons and Proton-Gated DEG/ENaC Channels. Neuron [Internet]. 2000;26(1):133–141. Available from: https://www.cell.com/action/showPdf?pii=S0896-6273%2800%2981144–7. .
  • Deval E, Baron A, Lingueglia E, et al. Effects of neuropeptide SF and related peptides on acid sensing ion channel 3 and sensory neuron excitability. Neuropharmacology. 2003;44(5):662–671. .
  • Reimers C, Lee C-H, Kalbacher H, et al. Identification of a cono-RFamide from the venom of Conus textile that targets ASIC3 and enhances muscle pain. Proceedings of the National Academy of Sciences. 2017;114(17):E3507–E3515. .
  • Reiners M, Margreiter MA, Oslender-Bujotzek A, et al. The conorfamide RPRFA stabilizes the open conformation of acid-sensing ion channel 3 via the nonproton ligand–sensing domain. Mol Pharmacol. 2018;94(4):1114–1124. .
  • Osmakov DI, Koshelev SG, Ivanov IA, et al. Endogenous Neuropeptide Nocistatin Is a Direct Agonist of Acid-Sensing Ion Channels (ASIC1, ASIC2 and ASIC3). Biomolecules. 2019;9(9):401. .
  • Steinsbekk A, Rise MB, Johnsen R. Changes among male and female visitors to practitioners of complementary and alternative medicine in a large adult Norwegian population from 1997 to 2008 (The HUNT studies). BMC Complement Altern Med [Internet]. 2011;11(1):61. Available from: http://www.biomedcentral.com/1472-6882/11/61. .
  • Dubinnyi MA, Osmakov DI, Koshelev SG, et al. Lignan from thyme possesses inhibitory effect on ASIC3 channel current. J Biol Chem. 2012;287(39):32993–33000. .
  • Osmakov DI, Koshelev SG, Belozerova OA, et al. Biological activity of sevanol and its analogues. Russ J Bioorganic Chem. 2015;41(5):543–547. .
  • Zhang ZG, Zhang XL, Wang XY, et al. Inhibition of acid sensing ion channel by ligustrazine on angina model in rat. Am J Transl Res. 2015;7:1798–1811.
  • Yan XG, Li WG, Qi X, et al. Subtype-selective inhibition of acid-sensing ion channel 3 by a natural flavonoid. CNS Neurosci Ther. 2019;25(1):p. p. 47–56. .
  • Qiu F, Liu TT, Qu ZW, et al. Gastrodin inhibits the activity of acid-sensing ion channels in rat primary sensory neurons.. Eur J Pharmacol [Internet]. 2014;731:50–57.
  • Sun X, Cao YB, Hu LF, et al. ASICs mediate the modulatory effect by paeoniflorin on alpha-synuclein autophagic degradation. Brain Res [Internet]. 2011;1396:77–87.
  • Garateix A, Salceda E, Menéndez R, et al. Antinociception produced by Thalassia testudinum extract BM-21 is mediated by the inhibition of acid sensing ionic channels by the phenolic compound thalassiolin B. Mol Pain. 2011;7:1–15.
  • Qu Z, Liu T, Qiu C, et al. Neuroscience Letters Inhibition of acid-sensing ion channels by chlorogenic acid in rat dorsal root ganglion neurons.. Neurosci Lett [Internet]. 2014;567:35–39.
  • Bagdas D, Cinkilic N, Yucel H. Antihyperalgesic activity of chlorogenic acid in experimental neuropathic pain. J Nat Med. 2013;67:698–704.
  • Osmakov DI, Koshelev SG, Andreev YA, et al. Proton-independent activation of acid-sensing ion channel 3 by an alkaloid, lindoldhamine, from Laurus nobilis.. Br J Pharmacol. 2018;175(6):p. p. 924–937. .
  • Wang W, Duan B, Xu H, et al. Calcium-permeable acid-sensing ion channel is a molecular target of the neurotoxic metal ion lead. J Biol Chem. 2006;281(5):2497–2505. .
  • Staruschenko A, Dorofeeva NA, Bolshakov KV, et al. Subunit-dependent cadmium and nickel inhibition of acid-sensing ion channels. Dev Neurobiol. 2007;67:p. 97–107.
  • Wang W, Yu Y, Xu TL. Modulation of acid-sensing ion channels by Cu2+ in cultured hypothalamic neurons of the rat. Neuroscience. 2007;145(2):631–641.
  • Jiang Q, Papasian CJ, Wang JQ, et al. Inhibitory regulation of acid-sensing ion channel 3 by zinc. Neurosci. 2010;169(2):574–583.
  • Chen X, Qiu L, Li M, et al. Diarylamidines: high potency inhibitors of acid-sensing ion channels. Neuropharmacology. 2010;58(7):1045–1053. .
  • Ugawa S, Ishida Y, Ueda T, et al. Nafamostat mesilate reversibly blocks acid-sensing ion channel currents. Biochem Biophys Res Commun. 2007;363(1):203–208. .
  • Boiko N, Kucher V, Eaton BA, et al. Inhibition of Neuronal Degenerin/Epithelial Na+ Channels by the Multiple Sclerosis Drug 4-Aminopyridine. J Biol Chem. 2013;288(13):9418–9427. .
  • Munro G, Christensen JK, Erichsen HK, et al. NS383 Selectively Inhibits Acid-Sensing Ion Channels Containing 1a and 3 Subunits to Reverse Inflammatory and Neuropathic Hyperalgesia in Rats. CNS Neurosci Ther. 2016;22(2):135–145. .
  • Price MP, Thompson RJ, Eshcol JO, et al. Stomatin modulates gating of acid-sensing ion channels. J Biol Chem. 2004;279(51):53886–53891. .
  • Wetzel C, Hu J, Riethmacher D, et al. A stomatin-domain protein essential for touch sensation in the mouse. Nature. 2007;445(7124):206–209. .
  • Moshourab RA, Wetzel C, Martinez-Salgado C, et al. Stomatin-domain protein interactions with acid-sensing ion channels modulate nociceptor mechanosensitivity. J Physiol. 2013;591(22):5555–5574. .
  • Kozlenkov A, Lapatsina L, Lewin GR, et al. Subunit-specific inhibition of acid sensing ion channels by stomatin-like protein 1. J Physiol. 2014. DOI:https://doi.org/10.1113/jphysiol.2013.258657.
  • Brand J, Smith ESJ, Schwefel D, et al. A stomatin dimer modulates the activity of acid-sensing ion channels. Embo J. 2012;31(17):3635–3646. .
  • Klipp RC, Cullinan MM, Bankston JR. Insights into the molecular mechanisms underlying the inhibition of acid-sensing ion channel 3 gating by stomatin. J Gen Physiol. 2020;152(3):1–16.
  • Bateman A. UniProt:A worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506–D515.
  • Schwarz MG, Namer B, Reeh PW, et al. TRPA1 and TRPV1 Antagonists Do Not Inhibit Human Acidosis-Induced Pain.. J Pain [Internet]. 2017;18(5):526–534.