2,629
Views
4
CrossRef citations to date
0
Altmetric
Technical Report

Immunomagnetic separation is a suitable method for electrophysiology and ion channel pharmacology studies on T cells

, , , , , & show all
Pages 53-66 | Received 12 Nov 2020, Accepted 01 Dec 2020, Published online: 28 Dec 2020

References

  • Hübner CA, Jentsch TJ. Ion channel diseases. Hum Mol Genet. 2002;11(20):2435–2445.
  • Clare JJ. Targeting ion channels for drug discovery. Discov Med. 2010;9:253–260.
  • Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov. 2006;5(12):993–996.
  • Feske S, Wulff H, Skolnik EY. Ion channels in innate and adaptive immunity. Annu Rev Immunol. 2015;33(1):291–353.
  • Wulff H, Beeton C, Chandy KG. Potassium channels as therapeutic targets for autoimmune disorders. Curr Opin Drug Discovery Dev. 2003;6:640–647.
  • Beeton C, Chandy KG. Potassium channels, memory T cells, and multiple sclerosis. Neuroscientist. 2005;11(6):550–562.
  • Beeton C, Wulff H, Standifer NE, et al. Kv1. 3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Nat Acad Sci. 2006;103(46):17414–17419.
  • Sakmann B, Neher E. Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol. 1984;46(1):455–472.
  • Matteson D, Deutsch C. K channels in T lymphocytes: a patch clamp study using monoclonal antibody adhesion. Nature. 1984;307(5950):468–471.
  • Perfetto SP, Chattopadhyay PK, Roederer M. Seventeen-colour flow cytometry: unravelling the immune system. Nat Rev Immunol. 2004;4(8):648–655.
  • Hulett HR, Bonner WA, Barrett J, et al. Cell sorting: automated separation of mammalian cells as a function of intracellular fluorescence. Science. 1969;166(3906):747–749.
  • Mollet M, Godoy‐Silva R, Berdugo C, et al. Computer simulations of the energy dissipation rate in a fluorescence‐activated cell sorter: implications to cells. Biotechnol Bioeng. 2008;100(2):260–272.
  • Seidl J, Knuechel R, Kunz‐Schughart L. Evaluation of membrane physiology following fluorescence activated or magnetic cell separation. Cytometry J Int Soc Anal Cytol. 1999;36(2):102–111.
  • Thiel A, Scheffold A, Radbruch A. Immunomagnetic cell sorting—pushing the limits. Immunotechnology. 1998;4(2):89–96.
  • Miltenyi S, Müller W, Weichel W, et al. High gradient magnetic cell separation with MACS. Cytometry J Int Soc Anal Cytol. 1990;11(2):231–238.
  • Borlido L, Azevedo A, Roque A, et al. Magnetic separations in biotechnology. Biotechnol Adv. 2013;31(8):1374–1385.
  • Plouffe BD, Murthy SK, Lewis LH. Fundamentals and application of magnetic particles in cell isolation and enrichment: a review. Rep Prog Phys. 2014;78(1):016601.
  • Chalmers J, Xiong Y, Jin X, et al. Quantification of non‐specific binding of magnetic micro‐and nanoparticles using cell tracking velocimetry: implication for magnetic cell separation and detection. Biotechnol Bioeng. 2010;105:1078–1093.
  • Jing Y, Mal N, Williams PS, et al. Quantitative intracellular magnetic nanoparticle uptake measured by live cell magnetophoresis. Faseb J. 2008;22(12):4239–4247.
  • Mahmoudi M, Azadmanesh K, Shokrgozar MA, et al. Effect of nanoparticles on the cell life cycle. Chem Rev. 2011;111(5):3407–3432.
  • Evaristo C, Steinbrück P, Pankratz J, et al. REAlease™ Immunomagnetic separation technology with reversible labeling for positive selection of leukocytes. Am Assoc Immnol. 2018;200:174.8-174.8.
  • Rubovszky B, Hajdu P, Krasznai Z, et al. Detection of channel proximity by nanoparticle-assisted delaying of toxin binding; a combined patch-clamp and flow cytometric energy transfer study. Eur Biophys J. 2005;34(2):127–143.
  • Davis KA, Abrams B, Iyer SB, et al. Determination of CD4 antigen density on cells: role of antibody valency, avidity, clones, and conjugation. Cytometry. 1998;33(2):197–205.
  • Hajdú P, Varga Z, Pieri C, et al. Cholesterol modifies the gating of Kv1. 3 in human T lymphocytes. Pflügers Archiv. 2003;445(6):674–682.
  • Panyi G. Biophysical and pharmacological aspects of K+ channels in T lymphocytes. Eur Biophys J. 2005;34:515–529.
  • Balajthy A, Somodi S, Pethő Z, et al. 7DHC-induced changes of Kv1. 3 operation contributes to modified T cell function in Smith-Lemli-Opitz syndrome. Pflügers Archiv-European. Journal of Physiology. 2016;468:1403–1418.
  • Schmid I, Krall WJ, Uittenbogaart CH, et al. Dead cell discrimination with 7‐amino‐actinomcin D in combination with dual color immunofluorescence in single laser flow cytometry. Cytometry J Int Soc Anal Cytol. 1992;13(2):204–208.
  • Levy DI, Deutsch C. A voltage-dependent role for K+ in recovery from C-type inactivation. Biophys J. 1996;71(6):3157.
  • Cahalan M, Chandy K, DeCoursey T, et al. A voltage‐gated potassium channel in human T lymphocytes. J Physiol. 1985;358(1):197–237.
  • Lindau M, Neher E. Patch-clamp techniques for time-resolved capacitance measurements in single cells. Pflugers Arch. 1988;411(2):137–146.
  • Panyi G, Varga Z, Gáspár R. Ion channels and lymphocyte activation. Immunol Lett. 2004;92(1–2):55–66.
  • Taylor AL. What we talk about when we talk about capacitance measured with the voltage-clamp step method. J Comput Neurosci. 2012;32(1):167–175.
  • Bagdáany M, Batista CV, Valdez-Cruz NA, et al. Anuroctoxin, a new scorpion toxin of the α-KTx 6 subfamily, is highly selective for Kv1. 3 over IKCa1 ion channels of human T lymphocytes. Mol Pharmacol. 2005;67(4):1034–1044.
  • Massefski W, Redfield AG, Hare DR, et al. Molecular structure of charybdotoxin, a pore-directed inhibitor of potassium ion channels. Science. 1990;249(4968):521–524.
  • Luna-Ramirez K, Csoti A, McArthur JR, et al. Structural basis of the potency and selectivity of Urotoxin, a potent Kv1 blocker from scorpion venom. Biochem Pharmacol. 2020;174:113782.
  • Olamendi-Portugal T, Csoti A, Jimenez-Vargas J, et al. Pi5 and Pi6, two undescribed peptides from the venom of the scorpion Pandinus imperator and their effects on K+-channels. Toxicon. 2017;133:136–144.
  • Kirsch G, Taglialatela M, Brown A. Internal and external TEA block in single cloned K+ channels. Am J Physiol Cell Physiol. 1991;261(4):C583–C90.
  • Marom S, Levitan IB. State-dependent inactivation of the Kv3 potassium channel. Biophys J. 1994;67(2):579–589.
  • Bartok A, Toth A, Somodi S, et al. Margatoxin is a non-selective inhibitor of human Kv1. 3 K+ channels. Toxicon. 2014;87:6–16.
  • Varga Z, Gurrola-Briones G, Papp F, et al. Vm24, a natural immunosuppressive peptide, potently and selectively blocks Kv1. 3 potassium channels of human T cells. Mol Pharmacol. 2012;82(3):372–382.
  • McIntyre CA, Flyg BT, Fong TC. Fluorescence-activated cell sorting for CGMP processing of therapeutic cells. BioProcess Int. 2010;8:44–53.
  • Osborne GW. A method of quantifying cell sorting yield in “real time”. Cytometry Part A. 2010;77(10):983–989.
  • Yan H, Ding C-g, Tian P-x, Ge G-q, Jin Z-k, Jia L-n, et al. Magnetic cell sorting and flow cytometry sorting methods for the isolation and function analysis of mouse CD4+ CD25+ Treg cells. J Zhejiang Univ Sci B. 2009;10(12):928.
  • Resina-Pelfort O, Comas-Riu J, Vives-Rego J. Effects of deflected droplet electrostatic cell sorting on the viability and exoproteolytic activity of bacterial cultures and marine bacterioplankton. Syst Appl Microbiol. 2001;24(1):31–36.
  • Di L, Srivastava S, Zhdanova O, et al. Inhibition of the K+ channel KCa3. 1 ameliorates T cell–mediated colitis. Proc Nat Acad Sci. 2010;107(4):1541–1546.
  • Lam J, Wulff H. The lymphocyte potassium channels Kv1. 3 and KCa3. 1 as targets for immunosuppression. Drug Dev Res. 2011;72:573–584.
  • Spencer RH, Sokolov Y, Li H, et al. Purification, visualization, and biophysical characterization of Kv1. 3 tetramers. J Biol Chem. 1997;272(4):2389–2395.
  • Xu Y, Ramu Y, Lu Z. Removal of phospho-head groups of membrane lipids immobilizes voltage sensors of K+ channels. Nature. 2008;451(7180):826–829.
  • Liin SI, Yazdi S, Ramentol R, et al. Mechanisms underlying the dual effect of polyunsaturated fatty acid analogs on Kv7. 1. Cell Rep. 2018;24(11):2908–2918.
  • Somodi S, Varga Z, Hajdu P, et al. pH-dependent modulation of Kv1. 3 inactivation: role of His399. Am J Physiol Cell Physiol. 2004;287(4):C1067–C76.
  • Corzo J. Time, the forgotten dimension of ligand binding teaching. Biochem Mol Biol Educ. 2006;34(6):413–416.
  • Petho Z, Balajthy A, Bartok A, et al. The anti-proliferative effect of cation channel blockers in T lymphocytes depends on the strength of mitogenic stimulation. Immunol Lett. 2016;171:60–69.
  • Veytia-Bucheli JI, Jiménez-Vargas JM, Melchy-Pérez EI, et al. K v 1.3 channel blockade with the Vm24 scorpion toxin attenuates the CD4+ effector memory T cell response to TCR stimulation. Cell Commun Signaling. 2018;16(1):45.