3,829
Views
9
CrossRef citations to date
0
Altmetric
Review

Molecular mechanisms of activation and regulation of ANO1-Encoded Ca2+-Activated Cl- channels

, , , &
Pages 569-603 | Received 19 Aug 2021, Accepted 29 Aug 2021, Published online: 27 Sep 2021

References

  • Barish ME, Segal M, Barker JL. A transient calcium-dependent chloride current in the immature Xenopus oocyte. J Physiol. 1984;3111:567–570.
  • Miledi R. A calcium-dependent transient outward current in Xenopus laevis oocytes. Proc R Soc Lond B Biol Sci. 1982;215:491–497.
  • Bader CR, Bertrand D, Schwartz EA. Voltage-activated and calcium-activated currents studied in solitary rod inner segments from the salamander retina. J Physiol. 1982;331(1):253–284.
  • Hartzell HC, Qu Z, Machaca K, et al. The endogenous Ca2+-activated Cl Channel in Xenopus oocytes. Ca2+-activated Cl channels: current Topics in Biomembranes New York. Academic Press; 2002. p. 3–39.
  • Wozniak KL, Phelps WA, Tembo M, et al. The TMEM16A channel mediates the fast polyspermy block in Xenopus laevis. J Gen Physiol. 2018;150(9):1249–1259.
  • Wozniak KL, Carlson AE. Ion channels and signaling pathways used in the fast polyspermy block. Mol Reprod Dev. 2020;87(3):350–357.
  • Bader CR, Bertrand D, Schlichter R. Calcium-activated chloride current in cultured sensory and parasympathetic quail neurones. J Physiol. 1987;394(1):125–148.
  • Bernheim L, Bader CR, Bertrand D, et al. Transient expression of a Ca2+-activated Cl− current during development of quail sensory neurons. Dev Biol. 1989;136(1):129–139.
  • Mayer ML. A calcium-activated chloride current generates the after-depolarization of rat sensory neurones in culture. J Physiol. 1985;364(1):217–239.
  • Owen DG, Segal M, Barker JL. A Ca−dependent Cl− conductance in cultured mouse spinal neurones. Nature. 1984;311(5986):567–570.
  • Owen DG, Segal M, Barker JL. Voltage-clamp analysis of a Ca2+- and voltage-dependent chloride conductance in cultured mouse spinal neurons. J Neurophysiol. 1986;55(6):1115–1135.
  • Schlichter R, Bader CR, Bertrand D, et al. Expression of substance P and of a Ca2+-activated Cl− current in quail sensory trigeminal neurons. Neuroscience. 1989;30(3):585–594.
  • Scott RH, McGuirk SM, Dolphin AC. Modulation of divalent cation-activated chloride ion currents. Br J Pharmacol. 1988;94(3):653–662.
  • Zygmunt AC, Gibbons WR. Calcium-activated chloride current in rabbit ventricular myocytes. Circ Res. 1991;68(2):424–437.
  • Zygmunt AC, Gibbons WR. Properties of the calcium-activated chloride current in heart. J General Physiol. 1992;99(3):391–414.
  • Zygmunt AC. Intracellular calcium activates a chloride current in canine ventricular myocytes. Am J Physiol Heart Circ Physiol. 1994;36(5):H1984–H95
  • Hume RI, Thomas SA. A calcium- and voltage-dependent chloride current in developing chick skeletal muscle. J Physiol. 1989;417(1):241–261.
  • NG B, Wa L. Membrane mechanism associated with muscarinic receptor activation in single cells freshly dispersed from the rat anococcygeus muscle. Br J Pharmacol. 1987;92(2):371–379.
  • NG B, Wa L. Membrane ionic mechanisms activated by noradrenaline in cells isolated from the rabbit portal vein. J Physiol. 1988;404(1):557–573.
  • Pacaud P, Loirand G, Lavie JL, et al. Calcium-activated chloride current in rat vascular smooth muscle cells in short-term primary culture. Pflugers Arch. 1989;413(6):629–636.
  • Pacaud P, Loirand G, Mironneau C, et al. Noradrenaline activates a calcium-activated chloride conductance and increases the voltage-dependent calcium current in cultured single cells of rat portal vein. Br J Pharmacol. 1989;97(1):139–146.
  • Amédée T, Cd B, Tb B, et al. Potassium, chloride and non-selective cation conductances opened by noradrenaline in rabbit ear artery cells. J Physiol. 1990;423(1):551–568.
  • Yuan XJ. Role of calcium-activated chloride current in regulating pulmonary vasomotor tone. Am J Physiol. 1997;272:L959–L68.
  • Jones K, Shmygol A, Kupittayanant S, et al. Electrophysiological characterization and functional importance of calcium-activated chloride channel in rat uterine myocytes. Pflugers Arch. 2004;448(1):36–43.
  • Wagner JA, Cozens AL, Schulman H, et al. Activation of chloride channels in normal and cystic fibrosis airway epithelial cells by multifunctional calcium/calmodulin-dependent protein kinase. Nature. 1991;349(6312):793–796.
  • Boucher RC. Human airway ion transport. part two. Am J Respir Crit Care Med. 1994;150(2):581–593.
  • Nilius B, Prenen J, Szucs G, et al. Calcium-activated chloride channels in bovine pulmonary artery endothelial cells. J Physiol. 1997;498(2):381–396.
  • Nilius B, Prenen J, Voets T, et al. Kinetic and pharmacological properties of the calcium-activated chloride-current in macrovascular endothelial cells. Cell Calcium. 1997;22(1):53–63.
  • Marty A, Tan YP, Trautmann A. Three types of calcium-dependent channel in rat lacrimal glands. J Physiol. 1984;357(1):293–325.
  • Evans MG, Marty A. Calcium-dependent chloride currents in isolated cells from rat lacrimal glands. J Physiol. 1986;378(1):437–460.
  • Korn SJ, Weight FF. Patch-clamp study of the calcium-dependent chloride current in AtT-20 pituitary cells. J Neurophysiol. 1987;58(6):1431–1451.
  • Arreola J, Melvin JE, Begenisich T. Activation of calcium-dependent chloride channels in rat parotid acinar cells. J Gen Physiol. 1996;108(1):35–47.
  • Nishimoto I, Wagner JA, Schulman H, et al. Regulation of Cl− channels by multifunctional CaM kinase. Neuron. 1991;6(4):547–555.
  • Reinsprecht M, Rohn MH, Spadinger RJ, et al. Blockade of capacitive Ca2+ influx by Cl− channel blockers inhibits secretion from rat mucosal-type mast cells. Mol Pharmacol. 1995;47:1014–1020.
  • Koumi S, Sato R, Aramaki T. Characterization of the calcium-activated chloride channel in isolated guinea-pig hepatocytes. J Gen Physiol. 1994;104(2):357–373.
  • Large WA, Wang Q. Characteristics and physiological role of the Ca2+-activated Cl− conductance in smooth muscle. Am J Physiol Cell Physiol. 1996;271(2):C435–C54.
  • Hartzell C, Putzier I, Arreola J. Calcium-activated chloride channels. Annu Rev Physiol. 2005;67(1):719–758.
  • Leblanc N, Ledoux J, Saleh S, et al. Regulation of calcium-activated chloride channels in smooth muscle cells: a complex picture is emerging. Can J Physiol Pharmacol. 2005;83(7):541–556.
  • Simon Bulley SB, Jaggar JH. Cl− channels in smooth muscle cells. Pflugers Arch. 2014;466(5):861–872.
  • Kitamura K, Yamazaki J. Chloride channels and their functional roles in smooth muscle tone in the vasculature. Jap J Pharmacol. 2001;85(4):351–357
  • Frings S, Reuter D, Kleene SJ. Neuronal Ca2+-activated Cl− channels - Homing in on an elusive channel species. Prog Neurobiol. 2000;60:247–289.
  • Leblanc N, Forrest AS, Ayon RJ, et al. Molecular and functional significance of Ca2+-activated Cl− channels in pulmonary arterial smooth muscle. Pulm Circ. 2015;5(2):244–268.
  • Bn L, EE S, Dc E. Regulation of mesangial cell ion channels by insulin and angiotensin II. Possible role in diabetic glomerular hyperfiltration. J Clin Invest. 1993;92(5):2141–2151.
  • Nilius B, Prenen J, Szucs G, et al. Calcium-activated chloride channels in bovine pulmonary artery endothelial cells. J Physiol. 1997;498(2):381–396.
  • Martin DK. Small conductance chloride channels in acinar cells from the rat mandibular salivary gland are directly controlled by a G-protein. Biochem Biophys Res Commun. 1993;192(3):1266–1273.
  • Collier ML, Levesque PC, Kenyon JL, et al. Unitary Cl− channels activated by cytoplasmic Ca2+ in canine ventricular myocytes. Circ Res. 1996;78(5):936–944.
  • Kuruma A, Hartzell HC. Dynamics of calcium regulation of chloride currents in Xenopus oocytes. Am J Physiol. 1999;276(1):C161–75.
  • Saleh SN, Angermann JE, Sones WR, et al. Stimulation of Ca2+-gated Cl− currents by the calcium-dependent K+ channel modulators NS1619 [1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2 H-benzimidazol-2-one] and isopimaric acid. J Pharmacol Exp Ther. 2007;321(3):1075–1084.
  • Klockner U. Intracellular calcium ions activate a low-conductance chloride channel in smooth-muscle cells isolated from human mesenteric artery. Pflugers Arch. 1993;424(3–4):231–237.
  • Hirakawa Y, Gericke M, Cohen RA, et al. Ca2+-dependent Cl− channels in mouse and rabbit aortic smooth muscle cells: regulation by intracellular Ca2+ and NO. Am J Physiol Heart Circ Physiol. 1999;277(5):H1732–H44
  • Van Renterghem C, Lazdunski M. Endothelin and vasopressin activate low conductance chloride channels in aortic smooth muscle cells. Pflugers Arch. 1993;425(1–2):156–163.
  • As P, Wa L. Multiple conductance states of single Ca2+-activated Cl− channels in rabbit pulmonary artery smooth muscle cells. J Physiol. 2003;547(1):181–196.
  • Evans MG, Marty A. Calcium-dependent chloride currents in isolated cells from rat lacrimal glands. J Physiol. 1986;378(1):437–460.
  • Greenwood IA, Ledoux J, Leblanc N. Differential regulation of Ca2+-activated Cl− currents in rabbit arterial and portal vein smooth muscle cells by Ca2+-calmodulin-dependent kinase. J Physiol. 2001;534(2):395–408.
  • Ledoux J, Greenwood I, Villeneuve LR, et al. Modulation of Ca2+-dependent Cl− channels by calcineurin in rabbit coronary arterial myocytes. J Physiol. 2003;552(3):701–714.
  • Greenwood IA, Ledoux J, Sanguinetti A, et al. Calcineurin Aa but not Ab augments ICl(Ca) in rabbit pulmonary artery smooth muscle cells. J Biol Chem. 2004;279(37):38830–38837.
  • Ayon R, Sones W, Forrest AS, et al. Complex phosphatase regulation of Ca2+-activated Cl− currents in pulmonary arterial smooth muscle cells. J Biol Chem. 2009;284(47):32507–32521.
  • Wiwchar M, Ayon R, Greenwood IA, et al. Phosphorylation alters the pharmacology of Ca2+-activated Cl− channels in rabbit pulmonary arterial smooth muscle cells. Br J Pharmacol. 2009;158(5):1356–1365.
  • Angermann JE, Sanguinetti AR, Kenyon JL, et al. Phosphorylation alters the pharmacology of Ca2+-activated Cl− channels in rabbit pulmonary arterial smooth muscle cells. J Gen Physiol. 2006;128(1):73–87.
  • Kuruma A, Hartzell HC. Bimodal control of a Ca2+-activated Cl− channel by different Ca2+ signals. J Gen Physiol. 2000;115(1):59–80.
  • Reisert J, Bauer PJ, Yau KW, et al. The Ca-activated Cl channel and its control in rat olfactory receptor neurons. J Gen Physiol. 2003;122(3):349–363.
  • Chipperfield AR, Harper AA. Chloride in smooth muscle. Prog Biophys Mol Biol. 2000;74(3–5):175–221.
  • Britton FC, Leblanc N, Kenyon JL. Calcium-activated chloride channels. In: Alvarez-Leefmans FJ, Delpire E, editors. Physiology and pathology of chloride transporters and channels in the nervous system - from molecules to diseases. San Diego CA: Academic Press; 2009. p. 233–256.
  • Begenisich T, Melvin JE. Regulation of chloride channels in secretory epithelia. J Membr Biol. 1998;163(2):77–85.
  • Kotlikoff MI, Wang YX. Calcium release and calcium-activated chloride channels in airway smooth muscle cells. Am J Respir Crit Care Med. 1998;158(supplement_2):S109–S14.
  • Kidd JF, Thorn P. Intracellular Ca2+ and Cl− channel activation in secretory cells. Ann Rev Physiol. 2000;62(1):493–513.
  • Jentsch TJ, Stein V, Weinreich F, et al. Molecular structure and physiological function of chloride channels. Physiol Rev. 2002;82(2):503–568.
  • Eggermont J. Calcium-activated chloride channels: (un)known, (un)loved? Proc Am Thorac Soc. 2004;1(1):22–27.
  • Melvin JE, Yule D, Shuttleworth T, et al. Regulation of fluid and electrolyte secretion in salivary gland acinar cells. Annu Rev Physiol. 2005;67(1):445–469.
  • Galietta LJ. The TMEM16 protein family: a new class of chloride channels? Biophys J. 2009;97(12):3047–3053.
  • Ferrera L, Caputo A, Galietta LJ. TMEM16A protein: a new identity for Ca2+-dependent Cl channels. Physiology (Bethesda). 2010;25:357–363.
  • Hartzell HC, Yu K, Xiao Q, et al. Anoctamin/TMEM16 family members are Ca2+-activated Cl− channels. J Physiol. 2009;587(10):2127–2139.
  • Berg J, Yang H, Jan LY. Ca2+-activated Cl− channels at a glance. J Cell Sci. 2012;125(6):1367–1371.
  • Kunzelmann K, Schreiber R, Kmit A, et al. Expression and function of epithelial anoctamins. Exp Physiol. 2012;97(2):184–192.
  • Tian Y, Schreiber R, Kunzelmann K. Anoctamins are a family of Ca2+-activated Cl− channels. J Cell Sci. 2012;125:4991–4998.
  • Scudieri P, Sondo E, Ferrera L, et al. The anoctamin family: TMEM16A and TMEM16B as calcium-activated chloride channels. Exp Physiol. 2012;97(2):177–183.
  • Pedemonte N, Galietta LJ. Structure and function of TMEM16 proteins (anoctamins). Physiol Rev. 2014;94(2):419–459.
  • Kunzelmann K. TMEM16, LRRC8A, bestrophin: chloride channels controlled by Ca and cell volume. Trends Biochem Sci. 2015;40(9):535–543.
  • Galietta Luis JV. TMEM16 proteins: membrane channels with unusual pores. Biophys J. 2016;111(9):1821–1822.
  • Kunzelmann K, Cabrita I, Wanitchakool P, et al. Modulating Ca2+ signals: a common theme for TMEM16, Ist2, and TMC. Pflugers Arch. 2016;468(3):475–490.
  • Whitlock JM, Hartzell HC. A pore idea: the ion conduction pathway of TMEM16/ANO proteins is composed partly of lipid. Pflugers Arch. 2016;468(3):455–473.
  • Wang Q, Rc H, Wa L. Properties of spontaneous inward currents recorded in smooth muscle cells isolated from the rabbit portal vein. J Physiol. 1992;451(1):525–537.
  • Lamb FS, Volk KA, Shibata EF. Calcium-activated chloride current in rabbit coronary artery myocytes. Circ Res. 1994;75(4):742–750.
  • Wang YX, Kotlikoff MI. Inactivation of calcium-activated chloride channels in smooth muscle by calcium/calmodulin-dependent protein kinase. Proc Natl Acad Sci U S A. 1997;94(26):14918–14923.
  • Ia G, Leblanc N, DV G, et al. Modulation of ICl(Ca) in vascular smooth muscle cells by oxidizing and cysteine-reactive reagents. Pflugers Arch. 2002;443(3):473–482.
  • Bao R, Lifshitz LM, Tuft RA, et al. A close association of RyRs with highly dense clusters of Ca2+-activated Cl− channels underlies the activation of STICs by Ca2+ sparks in mouse airway smooth muscle. J Gen Physiol. 2008;132(1):145–160.
  • Zhu MH, Kim TW, Ro S, et al. A Ca2+-activated Cl− conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity. J Physiol. 2009;587(20):4905–4918.
  • Cunningham SA, Awayda MS, Bubien JK, et al. Cloning of an epithelial chloride channel from bovine trachea. J Biol Chem. 1995;270(52):31016–31026.
  • Fuller CM, Benos DJ. Ca2+-Activated Cl− channels: a newly emerging anion transport family. News in physiological sciences: an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society. 2000;15:165–171.
  • Pauli BU, AbdelGhany M, Cheng HC, et al. Molecular characteristics and functional diversity of CLCA family members. Clin Exp Pharmacol Physiol. 2000;27(11):901–905.
  • Fuller CM, Benos DJ. Identification of a new chloride channel: a sweet story? Gastroenterology. 2001;120(1):299–303.
  • Elble RC, Ji G, Nehrke K, et al. Molecular and functional characterization of a murine calcium-activated chloride channel expressed in smooth muscle. J Biol Chem. 2002;277(21):18586–18591.
  • Huang P, Liu J, Di A, et al. Regulation of human CLC-3 channels by multifunctional Ca2+/calmodulin-dependent protein kinase. J Biol Chem. 2001;276(23):20093–20100.
  • Robinson NC, Huang P, Kaetzel MA, et al. Identification of an N-terminal amino acid of the CLC-3 chloride channel critical in phosphorylation-dependent activation of a CaMKII-activated chloride current. J Physiol. 2004;556(2):353–368.
  • Suzuki M, Mizuno A. A novel human Cl− channel family related to drosophila flightless locus. J Biol Chem. 2004;279(21):22461–22468.
  • Suzuki M. The drosophila tweety family: molecular candidates for large-conductance Ca2+-activated Cl- channels. Exp Physiol. 2006;91(1):141–147.
  • Sun H, Tsunenari T, Yau KW, et al. The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc Natl Acad Sci U S A. 2002;99(6):4008–4013.
  • Hartzell HC, Qu Z, Yu K, et al. Molecular physiology of bestrophins: multifunctional membrane proteins linked to best disease and other retinopathies. Physiol Rev. 2008;88(2):639–672.
  • Caputo A, Caci E, Ferrera L, et al. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science. 2008;322(5901):590–594.
  • Schroeder BC, Cheng T, Jan YN, et al. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell. 2008;134(6):1019–1029.
  • Yang YD, Cho H, Koo JY, et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature. 2008;455(7217):1210–1215.
  • Loewen ME, Forsyth GW. Structure and function of CLCA proteins. Physiol Rev. 2005;85(3):1061–1092.
  • Fuller CM, Ji HL, Tousson A, et al. Ca2+-activated Cl− channels: a newly emerging anion transport family. Pflugers Arch. 2001;443(Suppl 1):S107–S10.
  • Gruber AD, Pauli BU. Molecular cloning and biochemical characterization of a truncated, secreted member of the human family of Ca2+-activated Cl− channels. Biochim Biophys Acta. 1999;1444(3):418–423.
  • Gibson A, Lewis AP, Affleck K, et al. hCLCA1 and mCLCA3 are secreted non-integral membrane proteins and therefore are not ion channels. J Biol Chem. 2005;280(29):27205–27212.
  • Mundhenk L, Alfalah M, Elble RC, et al. Both cleavage products of the mCLCA3 protein are secreted soluble proteins. J Biol Chem. 2006;281(40):30072–30080.
  • Loewen ME, Bekar LK, Walz W, et al. pCLCA1 lacks inherent chloride channel activity in an epithelial colon carcinoma cell line. Am J Physiol Gastrointest Liver Physiol. 2004;287(1):G33–41.
  • Jentsch TJ, Pusch M. CLC Chloride channels and transporters: structure, function, physiology, and disease. Physiol Rev. 2018;98(3):1493–1590.
  • Matchkov VV, Aalkjaer C, Nilsson H. A cyclic GMP-dependent calcium-activated chloride current in smooth-muscle cells from rat mesenteric resistance arteries. J Gen Physiol. 2004;123(2):121–134.
  • Matchkov VV, Aalkjaer C, Nilsson H. Distribution of cGMP-dependent and cGMP-independent Ca2+-activated Cl− conductances in smooth muscle cells from different vascular beds and colon. Pflugers Arch. 2005;451(2):371–379.
  • Matchkov VV, Larsen P, Bouzinova EV, et al. Bestrophin-3 (vitelliform macular dystrophy 2-like 3 protein) is essential for the cGMP-dependent calcium-activated chloride conductance in vascular smooth muscle cells. Circ Res. 2008;103(8):864–872.
  • As P, Wa L. Direct effect of Ca2+-calmodulin on cGMP-activated Ca2+-dependent Cl− channels in rat mesenteric artery myocytes. J Physiol. 2004;559(2):449–457.
  • As P, Wa L. Single cGMP-activated Ca2+-dependent Cl− channels in rat mesenteric artery smooth muscle cells. J Physiol. 2004;555(2):397–408.
  • Ferrera L, Caputo A, Ubby I, et al. Regulation of TMEM16A chloride channel properties by alternative splicing. J Biol Chem. 2009;284(48):33360–33368.
  • Bradley E, Fedigan S, Webb T, et al. Pharmacological characterization of TMEM16A currents. Channels (Austin). 2014;8(4):308–320.
  • Sung TS, O’Driscoll K, Zheng H, et al. Influence of intracellular Ca2+ and alternative splicing on the pharmacological profile of ANO1 channels. Am J Physiol Cell Physiol. 2016;311(3):C437–51.
  • O’Driscoll KE, Pipe RA, Britton FC. Increased complexity of Tmem16a/anoctamin 1 transcript alternative splicing. BMC Mol Biol. 2011;12(1):35.
  • Xiao Q, Yu K, Perez-Cornejo P, et al. Voltage- and calcium-dependent gating of TMEM16A/Ano1 chloride channels are physically coupled by the first intracellular loop. Proc Natl Acad Sci U S A. 2011;108(21):8891–8896.
  • Mazzone A, Bernard CE, Strege PR, et al. Altered expression of Ano1 variants in human diabetic gastroparesis. J Biol Chem. 2011;286(15):13393–13403.
  • Ferrera L, Scudieri P, Sondo E, et al. A minimal isoform of the TMEM16A protein associated with chloride channel activity. Biochim Biophys Acta. 2011;1818(9):2214–2223.
  • Sondo E, Scudieri P, Tomati V, et al. Non-canonical translation start sites in the TMEM16A chloride channel. Biochim Biophys Acta. 2014;1838(1):89–97.
  • Mazzone A, Gibbons SJ, Bernard CE, et al. Identification and characterization of a novel promoter for the human ANO1 gene regulated by the transcription factor signal transducer and activator of transcription 6 (STAT6). FASEB J. 2015;29(1):152–163.
  • Wang H, Zou L, Ma K, et al. Cell-specific mechanisms of TMEM16A Ca2+-activated chloride channel in cancer. Mol Cancer. 2017;16(1):152.
  • Ohshiro J, Yamamura H, Saeki T, et al. The multiple expression of Ca2+-activated Cl− channels via homo- and hetero-dimer formation of TMEM16A splicing variants in murine portal vein. Biochem Biophys Res Commun. 2014;443(2):518–523.
  • Suzuki J, Fujii T, Imao T, et al. Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members. J Biol Chem. 2013;288(19):13305–13316.
  • Falzone ME, Malvezzi M, Lee BC, et al. Known structures and unknown mechanisms of TMEM16 scramblases and channels. J Gen Physiol. 2018;150(7):933–947.
  • Martins JR, Faria D, Kongsuphol P, et al. Anoctamin 6 is an essential component of the outwardly rectifying chloride channel. Proc Natl Acad Sci U S A. 2011;108(44):18168–18172.
  • Grubb S, Poulsen KA, Juul CA, et al. TMEM16F (Anoctamin 6), an anion channel of delayed Ca2+ activation. J Gen Physiol. 2013;141(5):585–600.
  • Shimizu T, Iehara T, Sato K, et al. TMEM16F is a component of a Ca2+-activated Cl− channel but not a volume-sensitive outwardly rectifying Cl− channel. Am J Physiol Cell Physiol. 2013;304(8):C748–C59.
  • Lin H, Roh J, Woo JH, et al. TMEM16F/ANO6, a Ca2+-activated anion channel, is negatively regulated by the actin cytoskeleton and intracellular MgATP. Biochem Biophys Res Commun. 2018;503(4):2348–2354.
  • Scudieri P, Caci E, Venturini A, et al. Ion channel and lipid scramblase activity associated with expression of TMEM16F/ANO6 isoforms. J Physiol. 2015;593(17):3829–3848.
  • Szteyn K, Schmid E, Nurbaeva MK, et al. Expression and functional significance of the Ca2+-activated Cl− channel ANO6 in dendritic cells. Cell Physiol Biochem. 2012;30(5):1319–1332.
  • Yang H, Kim A, David T, et al. TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation. Cell. 2012;151(1):111–122.
  • Suzuki J, Umeda M, Sims PJ, et al. Calcium-dependent phospholipid scrambling by TMEM16F. Nature. 2010;468(7325):834–838.
  • Yu K, Whitlock JM, Lee K, et al. Identification of a lipid scrambling domain in ANO6/TMEM16F. Elife. 2015;4:e06901.
  • Schreiber R, Ousingsawat J, Wanitchakool P, et al. Regulation of TMEM16A/ANO1 and TMEM16F/ANO6 ion currents and phospholipid scrambling by Ca2+ and plasma membrane lipid. J Physiol. 2018;596(2):217–229.
  • Le T, Jia Z, Le SC, et al. An inner activation gate controls TMEM16F phospholipid scrambling. Nat Commun. 2019;10(1):1846.
  • Brunner JD, Lim NK, Schenck S, et al. X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature. 2014;516(7530):207–212.
  • Lee BC, Menon AK, Accardi A. The nhTMEM16 scramblase Is also a nonselective ion channel. Biophys J. 2016;111(9):1919–1924.
  • Malvezzi M, Chalat M, Janjusevic R, et al. Ca2+-dependent phospholipid scrambling by a reconstituted TMEM16 ion channel. Nat Commun. 2013;4(1):2367.
  • Dang S, Feng S, Tien J, et al. Cryo-EM structures of the TMEM16A calcium-activated chloride channel. Nature. 2017;552(7685):426–429.
  • Paulino C, Kalienkova V, Lam AKM, et al. Activation mechanism of the calcium-activated chloride channel TMEM16A revealed by cryo-EM. Nature. 2017;552(7685):421–425.
  • Paulino C, Neldner Y, Lam AK, et al. Structural basis for anion conduction in the calcium-activated chloride channel TMEM16A. In: eLife. 2017. p. 6.
  • Kalienkova V, Clerico Mosina V, Paulino C. The groovy TMEM16 family: molecular mechanisms of lipid scrambling and ion conduction. J Mol Biol. 2021;433(16):166941.
  • Fallah G, Romer T, Detro-Dassen S, et al. TMEM16A(a)/anoctamin-1 shares a homodimeric architecture with CLC chloride channels. Mol Cell Proteomics. 2011;10(2):S1–S11. M110 004697.
  • Sheridan JT, Worthington EN, Yu K, et al. Characterization of the oligomeric structure of the Ca2+-activated Cl− channel Ano1/TMEM16A. J Biol Chem. 2011;286(2):1381–1388.
  • Lim NK, Lam AK, Dutzler R. Independent activation of ion conduction pores in the double-barreled calcium-activated chloride channel TMEM16A. J Gen Physiol. 2016;148(5):375–392.
  • Jeng G, Aggarwal M, Yu W-P, et al. Independent activation of distinct pores in dimeric TMEM16A channels. J Gen Physiol. 2016;148(5):393–404.
  • Lam AKM, Rheinberger J, Paulino C, et al. Gating the pore of the calcium-activated chloride channel TMEM16A. Nat Commun. 2021;12(1):785.
  • Le SC, Jia Z, Chen J, et al. Molecular basis of PIP2-dependent regulation of the Ca2+-activated chloride channel TMEM16A. Nat Commun. 2019;10(1):3769.
  • Tembo M, Wozniak KL, Bainbridge RE, et al. Phosphatidylinositol 4,5-bisphosphate (PIP2) and Ca2+ are both required to open the Cl− channel TMEM16A. J Biol Chem. 2019;294(33):12556–12564.
  • Lam AKM, Dutzler R. Mechanism of pore opening in the calcium-activated chloride channel TMEM16A. Nat Commun. 2021;12(1):786.
  • Jia Z, Chen J. Specific PIP2 binding promotes calcium activation of TMEM16A chloride channels. Commun Biol. 2021;4(1):259.
  • Yu K, Duran C, Qu Z, et al. Explaining calcium-dependent gating of anoctamin-1 chloride channels requires a revised topology. Circ Res. 2012;110(7):990–999.
  • Tien J, Peters CJ, Wong XM, et al. A comprehensive search for calcium binding sites critical for TMEM16A calcium-activated chloride channel activity. Elife. 2014;3:e02772.
  • Xia XM, Fakler B, Rivard A, et al. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature. 1998;395(6701):503–507.
  • Schumacher MA, Rivard AF, Bachinger HP, et al. Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin. Nature. 2001;410(6832):1120–1124.
  • Wissmann R, Bildl W, Neumann H, et al. A helical region in the C terminus of small-conductance Ca2+-activated K+ channels controls assembly with apo-calmodulin. J Biol Chem. 2002;277(6):4558–4564.
  • Ito I, Hirono C, Yamagishi S, et al. Roles of protein kinases in neurotransmitter responses in Xenopus oocytes injected with rat brain mRNA. J Cell Physiol. 1988;134(1):155–160.
  • Morris AP, Frizzell RA. Ca2+-dependent Cl− channels in undifferentiated human colonic cells (HT-29). II. Regulation and rundown. Am J Physiol. 1993;264(4):C977–C85.
  • Tian Y, Kongsuphol P, Hug M, et al. Calmodulin-dependent activation of the epithelial calcium-dependent chloride channel TMEM16A. FASEB J. 2011;25(3):1058–1068.
  • Vocke K, Dauner K, Hahn A, et al. Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels. J Gen Physiol. 2013;142(4):381–404.
  • Jung J, Nam JH, Park HW, et al. Dynamic modulation of ANO1/TMEM16A HCO3− permeability by Ca2+/calmodulin. Proc Natl Acad Sci U S A. 2013;110(1):360–365.
  • Yu Y, Kuan AS, Chen TY. Calcium-calmodulin does not alter the anion permeability of the mouse TMEM16A calcium-activated chloride channel. J Gen Physiol. 2014;144(1):115–124.
  • Terashima H, Picollo A, Accardi A. Purified TMEM16A is sufficient to form Ca2+-activated Cl− channels. Proc Natl Acad Sci U S A. 2013;110(48):19354–19359.
  • Yu K, Zhu J, Qu Z, et al. Activation of the Ano1 (TMEM16A) chloride channel by calcium is not mediated by calmodulin. J Gen Physiol. 2014;143(2):253–267.
  • Yang T, Colecraft HM. Calmodulin regulation of TMEM16A and 16B Ca2+-activated chloride channels. Channels (Austin). 2016;10(1):38–44.
  • Yang T, Hendrickson WA, Colecraft HM. Preassociated apocalmodulin mediates Ca2+-dependent sensitization of activation and inactivation of TMEM16A/16B Ca2+-gated Cl− channels. Proc Natl Acad Sci U S A. 2014;111(51):18213–18218.
  • Peters CJ, Gilchrist JM, Tien J, et al. The sixth transmembrane segment is a major gating component of the TMEM16A calcium-activated chloride channel. Neuron. 2018;97(5):1063–77 e4.
  • Lam AK, Dutzler R. Calcium-dependent electrostatic control of anion access to the pore of the calcium-activated chloride channel TMEM16A. In: eLife. 2018. p. 7.
  • Bushell SR, Pike ACW, Falzone ME, et al. The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K. Nat Commun. 2019;10(1):3956.
  • Alvadia C, Lim NK, Clerico Mosina V, et al. Cryo-EM structures and functional characterization of the murine lipid scramblase TMEM16F. Elife. 2019;8:e44365.
  • Le SC, Yang H. An additional Ca2+ binding site allosterically controls TMEM16A activation. Cell Rep. 2020;33(13):108570.
  • Jeulin C, Seltzer V, Bailbe D, et al. EGF mediates calcium-activated chloride channel activation in the human bronchial epithelial cell line 16HBE14o−: involvement of tyrosine kinase p60c-src. Am J Physiol Lung Cell Mol Physiol. 2008;295(3):L489–96.
  • Ni YL, Kuan AS, Chen TY. Activation and Inhibition of TMEM16A calcium-activated chloride channels. PLoS One. 2014;9(1):e86734.
  • Lin CX, Lv XF, Yuan F, et al. Ca2+/calmodulin-dependent protein kinase II γ-Dependent serine727 phosphorylation is required for TMEM16A Ca2+-activated Cl− channel regulation in cerebrovascular cells. Circ J. 2018;82(3):903-+.
  • Ayon RJ, Hawn MB, Aoun J, et al. Molecular mechanism of TMEM16A regulation: role of CaMKII and PP1/PP2A. Am J Physiol Cell Physiol. 2019;317(6):C1093–C106.
  • Ko W, Jung S-R, Kim K-W, et al. Allosteric modulation of alternatively spliced Ca2+-activated Cl− channels TMEM16A by PI(4,5)P2 and CaMKII. Proc Natl Acad Sci U S A. 2020;117(48):30787–30798.
  • Ia G, Wa L. Comparison of the effects of fenamates on Ca-activated chloride and potassium currents in rabbit portal vein smooth muscle cells. Br J Pharmacol. 1995;116(7):2939–2948.
  • McLaughlin S, Wang J, Gambhir A, et al. PIP2 and proteins: interactions, organization, and information flow. Annu Rev Biophys Biomol Struct. 2002;31(1):151–175.
  • Suh BC, Hille B. PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys. 2008;37(1):175–195.
  • Hille B, Dickson EJ, Kruse M, et al. Phosphoinositides regulate ion channels. Biochim Biophys Acta. 2015;1851(6):844–856.
  • Pritchard HA, Leblanc N, Albert AP, et al. Inhibitory role of phosphatidylinositol 4,5 bisphosphate on TMEM16A encoded calcium-activated chloride channels in rat pulmonary artery. Br J Pharmacol. 2014;171(18):4311–4321.
  • Davis AJ, Forrest AS, Jepps TA, et al. Expression profile and protein translation of TMEM16A in murine smooth muscle. Am J Physiol Cell Physiol. 2010;299(5):C948–C59.
  • Manoury B, Tamuleviciute A, Tammaro P. TMEM16A/Anoctamin1 protein mediates calcium-activated chloride currents in pulmonary arterial smooth muscle cells. J Physiol. 2010;588(13):2305–2314.
  • Ta CM, Acheson KE, Rorsman NJG, et al. Contrasting effects of phosphatidylinositol 4,5-bisphosphate on cloned TMEM16A and TMEM16B channels. Br J Pharmacol. 2017;174(18):2984–2999.
  • Okamura Y, Murata Y, Iwasaki H. Voltage-sensing phosphatase: actions and potentials. J Physiol. 2009;587(3):513–520.
  • De Jesus-Perez JJ, Cruz-Rangel S, Espino-Saldana AE, et al. Phosphatidylinositol 4,5-bisphosphate, cholesterol, and fatty acids modulate the calcium-activated chloride channel TMEM16A (ANO1). Biochim Biophys Acta. 2018;1863(3):299–312.
  • Centeio R, Cabrita I, Benedetto R, et al. Pharmacological inhibition and activation of the Ca2+ activated Cl− channel TMEM16A. Int J Mol Sci. 2020;21(7):2557.
  • Yu K, Jiang T, Cui Y, et al. A network of phosphatidylinositol 4,5-bisphosphate binding sites regulates gating of the Ca2+-activated Cl− channel ANO1 (TMEM16A). Proc Natl Acad Sci U S A. 2019;116(40):19952–19962.
  • Patel HH, Murray F, Insel PA. Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annu Rev Pharmacol Toxicol. 2008;48(1):359–391.
  • Thomas CM, Smart EJ. Caveolae structure and function. J Cell Mol Med. 2008;12(3):796–809.
  • Sones WR, Davis AJ, Leblanc N, et al. Cholesterol depletion alters amplitude and pharmacology of vascular calcium-activated chloride channels. Cardiovasc Res. 2010;87(3):476–484.
  • Hug T, Koslowsky T, Ecke D, et al. Actin-dependent activation of ion conductances in bronchial epithelial cells. Pflugers Arch. 1995;429(5):682–690.
  • Ohshiro J, Yamamura H, Suzuki Y, et al. Modulation of TMEM16A-channel activity as Ca2+ activated Cl− conductance via the interaction with actin cytoskeleton in murine portal vein. J Pharmacol Sci. 2014;125(1):107–111.
  • Perez-Cornejo P, Gokhale A, Duran C, et al. Anoctamin 1 (TMEM16A) Ca2+-activated chloride channel stoichiometrically interacts with an ezrin-radixin-moesin network. Proc Natl Acad Sci U S A. 2012;109(26):10376–10381.
  • Fuller CM, Benos DJ. Electrophysiological characteristics of the Ca2+-activated Cl- channel family of anion transport proteins. Clin Exp Pharmacol Physiol. 2000;27(11):906–910.
  • Hamann M, Gibson A, Davies N, et al. Human ClCa1 modulates anionic conduction of calcium dependent chloride currents. J Physiol. 2009;587(10):2255–2274.
  • Yurtsever Z, Sala-Rabanal M, Randolph DT, et al. Self-cleavage of human CLCA1 protein by a novel internal metalloprotease domain controls calcium-activated chloride channel activation. J Biol Chem. 2012;287(50):42138–42149.
  • Sala-Rabanal M, Yurtsever Z, Nichols CG, et al. Secreted CLCA1 modulates TMEM16A to activate Ca2+-dependent chloride currents in human cells. Elife.2015;4:e05875.
  • Berry KN, Brett TJ. Structural and biophysical analysis of the CLCA1 VWA domain suggests mode of TMEM16A engagement. Cell Rep. 2020;30(4):1141–51 e3.
  • Sala-Rabanal M, Yurtsever Z, Berry KN, et al. Modulation of TMEM16A channel activity by the von willebrand factor type A (VWA) domain of the calcium-activated chloride channel regulator 1 (CLCA1). J Biol Chem. 2017;292(22):9164–9174.
  • Sharma A, Ramena G, Yin Y, et al. CLCA2 is a positive regulator of store-operated calcium entry and TMEM16A. PLoS One. 2018;13(5):e0196512.
  • Jin X, Shah S, Liu Y, et al. Activation of the Cl− channel ANO1 by localized calcium signals in nociceptive sensory neurons requires coupling with the IP3 receptor. Sci Signal. 2013;6(290):ra73.
  • Jin X, Shah S, Du X, et al. Activation of Ca2+-activated Cl− channel ANO1 by localized Ca2+ signals. J Physiol. 2016;594(1):19–30.
  • ZhuGe R, Sims SM, Tuft RA, et al. Ca2+ sparks activate K+ and Cl− channels, resulting in spontaneous transient currents in guinea-pig tracheal myocytes. J Physiol. 1998;513(3):711–718.
  • Huang F, Zhang H, Wu M, et al. Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction. Proc Natl Acad Sci U S A. 2012;109(40):16354–16359.
  • Gallos G, Remy KE, Danielsson J, et al. Functional expression of the TMEM16 family of calcium activated chloride channels in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2013;305(9):L625–L34.
  • Zhang CH, Li Y, Zhao W, et al. The transmembrane protein 16A Ca2+-activated Cl− channel in airway smooth muscle contributes to airway hyperresponsiveness. Am J Respir Crit Care Med. 2013;187(4):374–381.
  • Danielsson J, Yim PD, Rinderspacher A, et al. Chloride channel blockade relaxes airway smooth muscle and potentiates relaxation by beta-agonists. Am J Physiol Lung Cell Mol Physiol. 2014;307(3):L273–L82.
  • Danielsson J, Perez-Zoghbi J, Bernstein K, et al. Antagonists of the TMEM16A calcium-activated chloride channel modulate airway smooth muscle tone and intracellular calcium. Anesthesiology. 2015;123(3):569–581.
  • Danielsson J, Kuforiji AS, Yocum GT, et al. Agonism of the TMEM16A calcium-activated chloride channel modulates airway smooth muscle tone. Am J Physiol Lung Cell Mol Physiol. 2020;318(2):L287–L95.
  • Takayama Y, Shibasaki K, Suzuki Y, et al. Modulation of water efflux through functional interaction between TRPV4 and TMEM16A/anoctamin 1. FASEB J. 2014;28(5):2238–2248.
  • Derouiche S, Takayama Y, Murakami M, et al. TRPV4 heats up ANO1-dependent exocrine gland fluid secretion. FASEB J. 2018;32(4):fj201700954R.
  • Sun Y, Birnbaumer L, Singh BB. TRPC1 regulates calcium-activated chloride channels in salivary gland cells. J Cell Physiol. 2015;230(11):2848–2856.
  • Wang Q, Leo MD, Narayanan D, et al. Local coupling of TRPC6 to ANO1/TMEM16A channels in smooth muscle cells amplifies vasoconstriction in cerebral arteries. Am J Physiol Cell Physiol. 2016;310(11):C1001–9.
  • Takayama Y, Uta D, Furue H, et al. Pain-enhancing mechanism through interaction between TRPV1 and anoctamin 1 in sensory neurons. Proc Natl Acad Sci U S A. 2015;112(16):5213–5218.
  • Shah S, Carver CM, Mullen P, et al. Local Ca2+ signals couple activation of TRPV1 and ANO1 sensory ion channels. In: Sci Signal. 2020. p. 13.
  • Avalos Prado P, Hafner S, Comoglio Y, et al. KCNE1 is an auxiliary subunit of two distinct ion channel superfamilies. Cell. 2021;184(2):534–544.e11.
  • Sanguinetti MC, Curran ME, Zou A, et al. Coassembly of KvLQT1 and minK (IsK) proteins to form cardiac IKs potassium channel. Nature. 1996;384(6604):80–83.
  • Forrest AS, Joyce TC, Huebner ML, et al. Increased TMEM16A-encoded calcium-activated chloride channel activity is associated with pulmonary hypertension. Am J Physiol Cell Physiol. 2012;303(12):C1229–C43.
  • Wang M, Yang H, Zheng LY, et al. Downregulation of TMEM16A calcium-activated chloride channel contributes to cerebrovascular remodeling during hypertension through promoting basilar smooth muscle cell proliferation. Circulation. 2012;125(5):697–707.
  • Wang B, Li C, Huai R, et al. Overexpression of ANO1/TMEM16A, an arterial Ca2+-activated Cl- channel, contributes to spontaneous hypertension. J Mol Cell Cardiol. 2015;82:22-32.
  • Heinze C, Seniuk A, Sokolov MV, et al. Disruption of vascular Ca2+-activated chloride currents lowers blood pressure. J Clin Invest. 2014;124(2):675–686.
  • Matchkov VV, Boedtkjer DM, Aalkjaer C. The role of Ca2+ activated Cl− channels in blood pressure control. Curr Opin Pharmacol. 2015;21:127–137.
  • Sun H, Xia Y, Paudel O, et al. Chronic hypoxia-induced upregulation of Ca2+-activated Cl− channel in pulmonary arterial myocytes: a mechanism contributing to enhanced vasoreactivity. J Physiol. 2012;590(15):3507–3521.
  • Wang K, Chen C, Ma J, et al. Contribution of calcium-activated chloride channel to elevated pulmonary artery pressure in pulmonary arterial hypertension induced by high pulmonary blood flow. Int J Clin Exp Pathol. 2015;8:146–154.
  • Papp R, Nagaraj C, Zabini D, et al. Targeting TMEM16A to reverse vasoconstriction and remodelling in idiopathic pulmonary arterial hypertension. Eur Respir J. 2019;53(6).
  • Shang L, Wang K, Liu D, et al. TMEM16A regulates the cell cycle of pulmonary artery smooth muscle cells in high-flow-induced pulmonary arterial hypertension rat model. Exp Ther Med. 2020;19:3275–3281.
  • Theilmann AL, Ormiston ML. Repurposing benzbromarone for pulmonary arterial hypertension: can channelling the past deliver the therapy of the future? Eur Respir J. 2019;53.
  • Kondo M, Tsuji M, Hara K, et al. Chloride ion transport and overexpression of TMEM16A in a guinea-pig asthma model. Clin Exp Allergy. 2017;47(6):795–804.
  • Ousingsawat J, Martins JR, Schreiber R, et al. Loss of TMEM16A causes a defect in epithelial Ca2++ dependent chloride transport. J Biol Chem. 2009;284(42):28698–28703.
  • Rock JR, O’Neal WK, Gabriel SE, et al. Transmembrane protein 16A (TMEM16A) Is a Ca2+-regulated Cl− secretory channel in mouse airways. J Biol Chem. 2009;284(22):14875–14880.
  • Schreiber R, Uliyakina I, Kongsuphol P, et al. Expression and function of epithelial anoctamins. J Biol Chem. 2010;285(10):7838–7845.
  • Dutta AK, Khimji AK, Kresge C, et al. Identification and functional characterization of TMEM16A, a Ca2+-activated Cl− channel activated by extracellular nucleotides, in biliary epithelium. J Biol Chem. 2011;286(1):766–776.
  • Mroz MS, Keely SJ. Epidermal growth factor chronically upregulates Ca2+-dependent Cl− conductance and TMEM16A expression in intestinal epithelial cells. J Physiol. 2012;590(8):1907–1920.
  • Caci E, Scudieri P, Di Carlo E, et al. Upregulation of TMEM16A protein in bronchial epithelial cells by bacterial pyocyanin. PLoS One. 2015;10(6):e0131775.
  • Benedetto R, Cabrita I, Schreiber R, et al. TMEM16A is indispensable for basal mucus secretion in airways and intestine. FASEB J. 2018;33(3):4502-4512.
  • Saha T, Aoun J, Hayashi M, et al. Intestinal TMEM16A control luminal chloride secretion in a NHERF1 dependent manner. Biochem Biophys Rep. 2021;25:100912.
  • Liu W, Lu M, Liu B, et al. Inhibition of Ca2+-activated Cl− channel ANO1/TMEM16A expression suppresses tumor growth and invasiveness in human prostate carcinoma. Cancer Lett. 2012;326(1):41–51.
  • Duvvuri U, Shiwarski DJ, Xiao D, et al. TMEM16A induces MAPK and contributes directly to tumorigenesis and cancer progression. Cancer Res. 2012;72(13):3270–3281.
  • Galindo BE, Vacquier VD. Phylogeny of the TMEM16 protein family: some members are overexpressed in cancer. Int J Mol Med. 2005;16:919–924.
  • Qu Z, Yao W, Yao R, et al. The Ca2+-activated Cl− channel, ANO1 (TMEM16A), is a double-edged sword in cell proliferation and tumorigenesis. Cancer Med. 2014;3(3):453–461.
  • Sauter DRP, Novak I, Pedersen SF, et al. ANO1 (TMEM16A) in pancreatic ductal adenocarcinoma (PDAC). Pflugers Arch. 2015;467(7):1495–1508.
  • Britschgi A, Bill A, Brinkhaus H, et al. Calcium-activated chloride channel ANO1 promotes breast cancer progression by activating EGFR and CAMK signaling. Proc Natl Acad Sci U S A. 2013;110(11):E1026–E34.
  • Bill A, Alex Gaither L. The mechanistic role of the calcium-activated chloride channel ANO1 in tumor growth and signaling. Adv Exp Med Biol. 2017;966:1–14.