1,684
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Regulation of acid-sensing ion channels by protein binding partners

, & ORCID Icon
Pages 635-647 | Received 16 Jul 2021, Accepted 30 Aug 2021, Published online: 27 Oct 2021

References

  • Wu X, Larsson HP. Insights into Cardiac IKs (KCNQ1/KCNE1) channels regulation. Int J Mol Sci. 2020;21:E9440.
  • Tanabe T, Beam KG, Adams BA, et al. Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature. 1990;346:567–569.
  • Perni S, Lavorato M, Beam KG. De novo reconstitution reveals the proteins required for skeletal muscle voltage-induced Ca2+ release. Proc Natl Acad Sci U S A. 2017;114:13822–13827.
  • Biederer T, Kaeser PS, Blanpied TA. Trans-cellular nano-alignment of synaptic function. Neuron. 2017;96:680–696.
  • Goodman MB, Ernstrom GG, Chelur DS, et al. MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature. 2002;415:1039–1042.
  • Goodman MB, Sengupta P. How Caenorhabditis elegans senses mechanical stress, temperature, and other physical stimuli. Genetics. 2019;212:25–51.
  • Chalfie M. Neurosensory mechanotransduction. Nat Rev Mol Cell Biol. 2009;10:44–52.
  • Goodman MB, Ernstrom GG, Chelur DS, et al. MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature. 2002;415:1039.
  • O’Hagan R, Chalfie M, Goodman MB, et al. DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat Neurosci. 2005;8:43–50.
  • Rungaldier S, Umlauf E, Mairhofer M, et al. Structure-function analysis of human stomatin: a mutation study. PLOS ONE. 2017;12:e0178646.
  • Snyers L, Umlauf E, Cysteine PR. 29 is the major palmitoylation site on stomatin. FEBS Lett. 1999;449:101–104.
  • Zhang J-Z, Abbud W, Prohaska R, et al. Overexpression of stomatin depresses GLUT-1 glucose transporter activity. Am J Physiol Cell Physiol. 2001;280:C1277–83.
  • Qi Y, Andolfi L, Frattini F, et al. Membrane stiffening by STOML3 facilitates mechanosensation in sensory neurons. Nat Commun. 2015;6:8512.
  • Genetet S, Desrames A, Chouali Y, et al. Stomatin modulates the activity of the Anion exchanger 1 (AE1, SLC4A1). Sci Rep. 2017;7:46170.
  • Brown AL, Liao Z, Mb G. MEC-2 and MEC-6 in the Caenorhabditis elegans sensory mechanotransduction complex: auxiliary subunits that enable channel activity. J Gen Physiol. 2008;131:605–616.
  • Price MP, Thompson RJ, Eshcol JO, et al. Stomatin modulates gating of acid-sensing ion channels. J Biol Chem. 2004;279:53886–53891.
  • Klipp RC, Cullinan MM, Bankston JR. Insights into the molecular mechanisms underlying the inhibition of acid-sensing ion channel 3 gating by stomatin. J Gen Physiol. 2020;152(3).
  • Brand J, Smith ESJ, Schwefel D, et al. A stomatin dimer modulates the activity of acid-sensing ion channels. EMBO J. 2012;31:3635–3646.
  • Rook ML, Miaro M, Couch T, et al. Mutation of a conserved glutamine residue does not abolish desensitization of acid-sensing ion channel 1. J Gen Physiol [Internet]. 2021 cited 2021 Jun 28;153. Available from https://doi.org/https://doi.org/10.1085/jgp.202012855
  • Kozlenkov A, Lapatsina L, Lewin GR, et al. Subunit-specific inhibition of acid sensing ion channels by stomatin-like protein 1. J Physiol. 2014;592:557–569.
  • García-Añoveros J, Derfler B, Neville-Golden J, et al. BNaC1 and BNaC2 constitute a new family of human neuronal sodium channels related to degenerins and epithelial sodium channels. PNAS. 1997;94:1459–1464.
  • Rosa Da De La, Sr K, Kolar A, et al. Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system. J Physiol. 2003;546:77–87.
  • Waldmann R, Champigny G, Bassilana F, et al. A proton-gated cation channel involved in acid-sensing. Nature. 1997;386:173–177.
  • Wetzel C, Hu J, Riethmacher D, et al. A stomatin-domain protein essential for touch sensation in the mouse. Nature. 2007;445:206–209.
  • Lapatsina L, Jira JA, Smith ESJ, et al. Regulation of ASIC channels by a stomatin/STOML3 complex located in a mobile vesicle pool in sensory neurons. Open Biol. 2012;2:120096.
  • Moshourab RA, Wetzel C, Martinez‐Salgado C, et al. Stomatin-domain protein interactions with acid-sensing ion channels modulate nociceptor mechanosensitivity. J Physiol. 2013;591:5555–5574.
  • Wetzel C, Pifferi S, Picci C, et al. Small-molecule inhibition of STOML3 oligomerization reverses pathological mechanical hypersensitivity. Nat Neurosci. 2017;20:209–218.
  • Poole K, Herget R, Lapatsina L, et al. Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch. Nat Commun. 2014;5:3520.
  • Otey CA, Carpen O. Alpha-actinin revisited: a fresh look at an old player. Cell Motil Cytoskeleton. 2004;58:104–111.
  • Nakagawa T, Engler JA, Sheng M. The dynamic turnover and functional roles of α-actinin in dendritic spines. Neuropharmacology. 2004;47:734–745.
  • Cukovic D, Lu GW-K, Wible B, et al. A discrete amino terminal domain of Kv1.5 and Kv1.4 potassium channels interacts with the spectrin repeats of α-actinin-2. FEBS Lett. 2001;498:87–92.
  • Hall DD, Dai S, Tseng P-Y, et al. Competition between α-actinin and Ca2+-Calmodulin controls surface retention of the L-type Ca2+ channel CaV1.2. Neuron. 2013;78:483–497.
  • Li Q, Dai X-Q, Shen PY, et al. Direct binding of α-actinin enhances TRPP3 channel activity. J Neurochem. 2007;103:2391–2400.
  • Wyszynski M, Lin J, Rao A, et al. Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature. 1997;385:439–442.
  • Mk S, Schnizler K, Zha X, et al. The Cytoskeletal protein α-actinin regulates acid-sensing ion channel 1a through a C-terminal interaction*. J Biol Chem. 2009;284:2697–2705.
  • Anzai N, Deval E, Schaefer L, et al. The multivalent PDZ domain-containing protein CIPP is a partner of acid-sensing ion channel 3 in sensory neurons. J Biol Chem. 2002;277:16655–16661.
  • Kurschner C, Mermelstein PG, Holden WT, et al. CIPP, a novel multivalent PDZ domain protein, selectively interacts with Kir4.0 family members, NMDA receptor subunits, neurexins, and neuroligins. Mol Cell Neurosci. 1998;11:161–172.
  • Duggan A, García-Añ overos J, Dp C. The PDZ domain protein PICK1 and the sodium channel BNaC1 interact and localize at mechanosensory terminals of dorsal root ganglion neurons and dendrites of central neurons*. J Biol Chem. 2002;277:5203–5208.
  • Baron A, Deval E, Salinas M, et al. Protein kinase C stimulates the acid-sensing ion channel ASIC2a via the PDZ domain-containing protein PICK1. J Biol Chem. 2002;277:50463–50468.
  • Am H-H, Ja W, Mp P, et al. Interaction of the synaptic protein PICK1 (protein interacting with C kinase 1) with the non-voltage gated sodium channels BNC1 (brain Na+ channel 1) and ASIC (acid-sensing ion channel). Biochem J. 2001;361:443–450.
  • Jin W, Shen C, Jing L, et al. PICK1 regulates the trafficking of ASIC1a and acidotoxicity in a BAR domain lipid binding-dependent manner. Mol Brain. 2010;3:39.
  • Liu X, He L, Dinger B, et al. Chronic hypoxia-induced acid-sensitive ion channel expression in chemoafferent neurons contributes to chemoreceptor hypersensitivity. Am J Physiol Lung Cell Mol Physiol. 2011;301:L985–92.
  • Z-g X, X-m Z, X-p C, et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell. 2004;118:687–698.
  • Siesjö BK. Pathophysiology and treatment of focal cerebral ischemia: part I: pathophysiology. J Neurosurg. 1992;77:169–184.
  • Wang E, Wu Y, Cheung JS, et al. pH imaging reveals worsened tissue acidification in diffusion kurtosis lesion than the kurtosis/diffusion lesion mismatch in an animal model of acute stroke. J Cereb Blood Flow Metab. 2017;37:3325–3333.
  • Tóth O M, Menyhárt Á, Frank R, et al. Tissue acidosis associated with ischemic stroke to guide neuroprotective drug delivery. Biology (Basel). 2020;9:460.
  • Chassagnon IR, McCarthy CA, Chin -YK-Y, et al. Potent neuroprotection after stroke afforded by a double-knot spider-venom peptide that inhibits acid-sensing ion channel 1a. PNAS. 2017;114:3750–3755.
  • Qiang M, Dong X, Zha Z, et al. Selection of an ASIC1a-blocking combinatorial antibody that protects cells from ischemic death. PNAS. 2018;115:E7469–77.
  • Wang Y-Z, Wang -J-J, Huang Y, et al. Tissue acidosis induces neuronal necroptosis via ASIC1a channel independent of its ionic conduction. eLife. 2015;4:e05682.
  • Galluzzi L, Kepp O, Chan FK-M, et al. Mechanisms and relevance to disease. Annu Rev Pathol. 2017;12:103–130.
  • Wang H, Sun L, Su L, et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell. 2014;54:133–146.
  • Wang -J-J, Liu F, Yang F, et al. Disruption of auto-inhibition underlies conformational signaling of ASIC1a to induce neuronal necroptosis. Nat Commun. 2020;11:475.
  • Malhotra V, Orci L, Glick BS, et al. Role of an N-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack. Cell. 1988;54:221–227.
  • Wilson DW, Wilcox CA, Flynn GC, et al. A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature. 1989;339:355–359.
  • Zhao M, Wu S, Zhou Q, et al. Mechanistic insights into the recycling machine of the SNARE complex. Nature. 2015;518:61–67.
  • Araki Y, Lin D-T, Huganir RL. Plasma membrane insertion of the AMPA receptor GluA2 subunit is regulated by NSF binding and Q/R editing of the ion pore. Proc Natl Acad Sci U S A. 2010;107:11080–11085.
  • Keith D, El-Husseini A, Goodman MB, et al. Excitation control: balancing PSD-95 function at the synapse. Front Mol Neurosci. 2008;1:4.
  • Dosemeci A, Makusky AJ, Jankowska-Stephens E, et al. Composition of the synaptic PSD-95 complex. Mol Cell Proteomics. 2007;6:1749–1760.
  • Am H-H, CJ B, As L, et al. PSD-95 and Lin-7b interact with acid-sensing ion channel-3 and have opposite effects on H +-gated current. J Biol Chem. 2004;279:46962–46968.
  • Harding AMS, Kusama N, Hattori T, et al. ASIC2 subunits facilitate expression at the cell surface and confer regulation by PSD-95. PLoS ONE. 2014;9:e93797.
  • Xm Z, Costa V, AMS H, et al. ASIC2 subunits target acid-sensing ion channels to the synapse via an association with PSD-95. J Neurosci. 2009;29:8438–8446.
  • Reczek D, Berryman M, Bretscher A. Identification of EPB50: a PDZ-containing phosphoprotein that associates with members of the ezrin-radixin-moesin family. J Cell Biol. 1997;139:169–179.
  • Deval E, Friend V, Thirant C, et al. Regulation of sensory neuron-specific acid-sensing ion channel 3 by the adaptor protein Na+/H+ exchanger regulatory factor-1. J Biol Chem. 2006;281:1796–1807.
  • Saha T, Aoun J, Hayashi M, et al. Intestinal TMEM16A control luminal chloride secretion in a NHERF1 dependent manner. Biochem Biophys Rep. 2021;25:100912.
  • Kammala AK, Syed M, Yang C, et al. Role for Na+/H+ exchanger regulatory factor 1 in modulating FcεRI-mediated mast cell activation. J Immunol. 2021;206:471–480.
  • Bushau-Sprinkle AM, Lederer ED, Bushau-Sprinkle AM, et al. New roles of the Na+/H+ exchange regulatory factor 1 scaffolding protein: a review. Am J Physiol Renal Physiol. 2020;318:F804–8.
  • Butz S, Okamoto M, Südhof TC. A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell. 1998;94:773–782.
  • Borg JP, Straight SW, Kaech SM, et al. Identification of an evolutionarily conserved heterotrimeric protein complex involved in protein targeting. J Biol Chem. 1998;273:31633–31636.
  • Mizuno M, Matsumoto A, Hamada N, et al. Role of an adaptor protein Lin-7B in brain development: possible involvement in autism spectrum disorders. J Neurochem. 2015;132:61–69.
  • Sorkin A, von Zastrow M. Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol. 2009;10:609–622.
  • Chen Z, Schmid SL. Evolving models for assembling and shaping clathrin-coated pits. J Cell Biol. 2020;219 (9).
  • Zeng W-Z, Liu D-S, Duan B, et al. Molecular mechanism of constitutive endocytosis of acid-sensing ion channel 1a and its protective function in acidosis-induced neuronal death. J Neurosci. 2013;33:7066–7078.
  • Li Y-H, Zhang N, Wang Y-N, et al. Multiple faces of protein interacting with C kinase 1 (PICK1): structure, function, and diseases. Neurochem Int. 2016;98:115–121.
  • Staudinger J, Lu J, Olson EN. Specific interaction of the PDZ domain protein PICK1 with the COOH terminus of protein kinase C-alpha. J Biol Chem. 1997;272:32019–32024.
  • Erlendsson S, Rathje M, tur Heidarsson PO, et al. Protein interacting with C-kinase 1 (PICK1) binding promiscuity relies on unconventional PSD-95/Discs-Large/ ZO-1 homology (PDZ) binding modes for nonclass II PDZ ligands *. Journal of Biological Chemistry. 2014;289:25327–25340.
  • Hu ZL, Huang C, Fu H, et al. Disruption of PICK1 attenuates the function of ASICs and PKC regulation of ASICs. Am J Physiol Cell Physiol. 2010;299:C1355–62.
  • Lm H, Ch N, Tr Y, et al. PICK1/calcineurin suppress ASIC1-mediated Ca 2 entry in rat pulmonary arterial smooth muscle cells. Am J Physiol Cell Physiol. 2016;310:390–400.
  • As L, Yermolaieva O, Hruska-Hageman A, et al. cAMP-dependent protein kinase phosphorylation of the acid-sensing ion channel-1 regulates its binding to the protein interacting with C-kinase-1. PNAS. 2003;100:2029–2034.
  • Deval E, Salinas M, Baron A, et al. ASIC2b-dependent regulation of ASIC3, an essential acid-sensing ion channel subunit in sensory neurons via the partner protein PICK-1. J Biol Chem. 2004;279:19531–19539.
  • Joch M, Ase AR, Chen CXQ, et al. Parkin-mediated monoubiquitination of the PDZ protein PICK1 regulates the activity of acid-sensing ion channels. Mol Biol Cell. 2007;18:3105–3118.
  • Chai S, Li M, Lan J, et al. A kinase-anchoring protein 150 and calcineurin are involved in regulation of acid-sensing ion channels ASIC1a and ASIC2a. J Biol Chem. 2007;282:22668–22677.
  • Carnegie GK, Means CK, Jd S. A-kinase anchoring proteins: from protein complexes to physiology and disease. IUBMB Life. 2009;61:394–406.
  • Vila-Carriles WH, Zhou Z-H, Bubien JK, et al. Participation of the Chaperone Hsc70 in the trafficking and functional expression of ASIC2 in Glioma cells. J Biol Chem. 2007;282:34381–34391.
  • Donier E, Rugiero F, Okuse K, et al. Annexin II light chain p11 promotes functional expression of acid-sensing ion channel ASIC1a. J Biol Chem. 2005;280:38666–38672.
  • MacLean DM, Jayaraman V. Deactivation kinetics of acid-sensing ion channel 1a are strongly pH-sensitive. PNAS. 2017;114:E2504–13.
  • Sherwood TW, Lee KG, Gormley MG, et al. Heteromeric acid-sensing ion channels (ASICs) composed of ASIC2b and ASIC1a display Novel channel properties and contribute to acidosis-induced neuronal death. J Neurosci. 2011;31:9723–9734.
  • Palmer MJ, Hull C, Vigh J, et al. Synaptic cleft acidification and modulation of short-term depression by exocytosed protons in retinal bipolar cells. J Neurosci. 2003;23:11332–11341.
  • Du J, Lr R, Mp P, et al. Protons are a neurotransmitter that regulates synaptic plasticity in the lateral amygdala. Proc Natl Acad Sci U S A. 2014;111:8961–8966.
  • Stawarski M, Hernandez RX, Feghhi T, et al. Neuronal Glutamatergic Synaptic Clefts Alkalinize rather than acidify during neurotransmission. J Neurosci. 2020;40:1611–1624.
  • Gottfried JA, Chesler M. Temporal resolution of activity-dependent pH shifts in rat hippocampal slices. J Neurophysiol. 1996;76:2804–2807.
  • MacGillavry HD, Song Y, Raghavachari S, et al. Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic AMPA receptors. Neuron. 2013;78:615–622.
  • Chen X, Nelson CD, Li X, et al. PSD-95 is required to sustain the molecular organization of the postsynaptic density. J Neurosci. 2011;31:6329–6338.
  • Sugiyama Y, Kawabata I, Sobue K, et al. Determination of absolute protein numbers in single synapses by a GFP-based calibration technique. Nat Methods. 2005;2:677–684.
  • Hering H, Lin C-C SM, Sheng M. Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J Neurosci. 2003;23:3262–3271.
  • Quintana P, Soto D, Poirot O, et al. Acid-sensing ion channel 1a drives AMPA receptor plasticity following ischaemia and acidosis in hippocampal CA1 neurons. J Physiol. 2015;593:4373–4386.
  • Birdsong WT, Fierro L, Williams FG, et al. Sensing muscle ischemia: coincident detection of acid and ATP via interplay of two ion channels. Neuron. 2010;68:739–749.
  • Ma C-L, Sun H, Yang L, et al. Acid-sensing ion channel 1a modulates NMDA receptor function through targeting NR1/NR2A/NR2B triheteromeric receptors. Neuroscience. 2019;406:389–404.
  • Gao J, Duan B, Wang D-G, et al. Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron. 2005;48:635–646.
  • Petroff E, Snitsarev V, Gong H, et al. Acid sensing ion channels regulate neuronal excitability by inhibiting BK potassium channels. Biochem Biophys Res Commun. 2012;426:511–515.
  • Storozhuk M, Kondratskaya E, Nikolaenko L, et al. A modulatory role of ASICs on GABAergic synapses in rat hippocampal cell cultures. Mol Brain. 2016;9:90.
  • Ren C, Gan X, Wu J, et al. Enhancement of acid-sensing ion channel activity by metabotropic P2Y UTP receptors in primary sensory neurons. Purinergic Signal. 2016;12:69–78.
  • Qiu F, Qiu C-Y, Liu Y-Q, et al. Potentiation of acid-sensing ion channel activity by the activation of 5-HT2 receptors in rat dorsal root ganglion neurons. Neuropharmacology. 2012;63:494–500.
  • Liu Y-Q, Qiu F, Qiu C-Y, et al. Cannabinoids INHIBIT ACID-SENSING ION CHANNEL CURRENTS IN RAT DORSAL ROOT GANGLION NEUROns. PLoS One. 2012;7:e45531.
  • Cai Q, Qiu C-Y, Qiu F, et al. Morphine inhibits acid-sensing ion channel currents in rat dorsal root ganglion neurons. Brain Res. 2014;1554:12–20.
  • Kim JH, Lee-Kwon W, Park JB, et al. Donowitz M. Ca(2+)-dependent inhibition of Na+/H+ exchanger 3 (NHE3) requires an NHE3-E3KARP-alpha-actinin-4 complex for oligomerization and endocytosis. J Biol Chem. 2002;277:23714–23724.
  • Chiacchiaretta M, Latifi S, Bramini M, et al. Neuronal hyperactivity causes Na+/H+ exchanger-induced extracellular acidification at active synapses. J Cell Sci. 2017;130:1435–1449.
  • Lapatsina L, Jira JA, Smith ESJ, et al. Regulation of ASIC channels by a stomatin/STOML3 complex located in a mobile vesicle pool in sensory neurons. Open Biol. 2012;2:120096.